[bookmark: _caw9wwd8w9ku]FHIR Shorthand Thoughts
Sydney Connectathon
2/3/2020

[bookmark: _z1pu3p6qhzjw]1) Adding an extension slice (nickjpgeorge@gmail.com)
For an extension named FishSpecies, this is currently this is done as:
	* extension[FishSpecies]


This implies that the extension slice will be named as FishSpecies.  Two issues with this approach:
1) The profile has no control over the name of the slice (e.g., UsCore Patient uses race) as name of extension, not UsCorePatientRace
2) The slice name is non-standard case (CapitalCase instead of camelCase)

Proposal: specify slice name separate from type.
	* extension[species] FishSpecies



Since adding extensions the most common kind of slicing, and almost never includes any additional slicing metadata, some additional sugar could be added so that the `extension contain` stanza could be elided:

	* extension[species] 0..1 FishSpecies



Thought: Referring to extensions by name makes me a little uncomfortable, because it could be ambiguous, e.g., if two Extensions share a name, or Extension has a name that is a Resource type.

Suggestion: I would advise my team to only refer by name to things within the current package, otherwise use URL.

[bookmark: _ime66cj08zzv]2) ComplexExtension keyword (nickjpgeorge@gmail.com)
Consider  USCoreEthnicityExtension

	Extension:      USCoreEthnicityExtension
  * extension contains
      ombCategory 0..1 MS and
      detailed 0..* and
      text 1..1 MS
  * extension[ombCategory].value[x] only Coding
  * extension[ombCategory].valueCoding from OmbEthnicityCategories (required)
  * extension[detailed].value[x] only Coding
  * extension[detailed].valueCoding from DetailedEthnicity (required)
  * extension[text].value[x] only string



This feels a bit verbose.  If we make a specialized grammar for keyword ComplexExtensions we could express this all as:

	ComplexExtension:      USCoreEthnicityExtension
  * ombCategoryCoding 0..1 MS Coding from OmbEthnicityCategories (required)
  * detailed 0..* Coding from DetailedEthnicity (required)
  * text 1..1 MS string



[bookmark: _r4lupt4vlgbv]

[bookmark: _qqoziyf5b3j4]3) Nested Complex Extensions (nickjpgeorge@gmail.com)
If I understand correctly, it’s not currently possible to define a multi-level complex extensions via FSH
E.g., something where

	MyComplexExtension.extension[complexField].extension[intField] = 5
MyComplexExtension.extension[complexField].extension[stringField] = "foo"
MyComplexExtension.extension[simpleField] = "bar"



Proposed grammer, building on the previous proposal

	ComplexExtension:      MyComplex
  * complexField 0..1 ComplexExtension
  * complexField.intField 1..1 integer
  * complexField.stringField 0..* string
  * simpleField 0..1 string



[bookmark: _lmy0z2z0mt1k]4) Ginzu/auto slicing on Coding (nickjpgeorge@gmail.com)
In CodeableConcepts, it is very useful to slice on system value.  I’m not sure of any other slicing that would be useful.  I propose that if a codeable concept has slices, we assume the following:

	  * $CODEABLE_CONCEPT.coding ^slicing.discriminator.path = "system"
  * $CODEABLE_CONCEPT.coding ^slicing.discriminator.type = #value



[bookmark: _xodxn07ayg33]5) Alias feel a bit ambiguous (nickjpgeorge@gmail.com)
It’s not obvious to me when something should be substituted out for an alias.  Pure string matching feels brittle.

Suggestion:  Adopt the common “$VARIABLE” pattern.
E.g.,
Instead of 
	* codes from system http://snomed.info/sct where code is-a SCT#90580008  "Fish (organism)"



Use
	* codes from system http://snomed.info/sct where code is-a $SCT#90580008  "Fish (organism)"



This will make it easier to visually scan for variable substitutions, as well as presumably easier to do typo checking and syntax highlighting.
