
DRAFT v1

Graph Generation of FHIR Resource

This Draft talks about an analytical prospective of FHIR resource using Graph Database.
We think that a Property Graph could be a good solution to perform analytics because of
its hierarchal nature and connection between each entities in a graph we call node. We
believe if we could make a complete Graph Network out out the Raw JSON of FHIR then
we can perform complex queries that will give use more information beyond the resource
itself.

We choose a Graph Database to manage all the complexity of creating and
managing the nodes and relationship between them. We found that Neo4J is a perfect fit
for this choice and its being used by many corporate analytics companies including many
Health-Care system providers.

So now we needed a way or proper tool-set to create Property Graph based on the
FHIR Resource (JSON). Hence we are on an ongoing development to create a libraary
that does the job , we call it “JYPHER”.

JYPHER
JYPHER stands for JSON to Cypher conversion . Cypher is a well known Graph Query
Language that is simplistic in nature and used in Neo4J Graph Database . JYPHER is in
ongoing development with Golang. It is a knowledge oriented JSON to cypher query
generator. It takes Raw JSON data as input then it uses a query processor for JSON data
and produces a Cypher query based on the domain knowledge that generates nodes and
vertex for the graph database.

Fig 1 : Internal Structure of JYPHER

JYPHER library has 4 major components

1. JSON Query Parser
During the development of JYPHER we needed a way to perform complex queries

on Raw JSON data. For this we have used JSON PATH (
http://goessner.net/articles/JsonPath/index.html#e2) library to extract data out of FHIR
Resource.

For instance, let’s assume we need to know what is the name of the state that the
person uses as official or his marital status etc from a complex JSON data like below.

Copyright (c) 2017 Fahim , fahim.shoumik@gmail.com

http://goessner.net/articles/JsonPath/index.html#e2

Ultimately we need the value of multiple fields in a JSON data that could be nested to any
level .

A syntax example of query would be, like $.maritalStatus.text in a JSON file means
there exists a parent field or object called maritalStatus and it has child field or property
called text . Look at the table below for a quick idea .

Below is a sample of FHIR Patient Resource in JSON

{
 "resourceType":"Patient",

 "id":"HJU345ER",
 "identifier":[

 {
 "use":"usual",

 "system":"https://neuron.care/system/identifier",
 "value":"HJU345ER"

 }
],

 "active":true,
 "name":[

 {
 "use":"usual",

 "family":"Babu",
 "given":[

 "Amin",
 "Rahman"

],
 "suffix":[

 "MSc"
]

 }
],

 "telecom":[
 {

 "system":"phone",
 "value":"0648352638",

 "use":"mobile"
 },

 {
 "system":"email",

 "value":"p.patient@gmail.com",
 "use":"home"

 }
],

 "gender":"male",
 "birthDate":"10-10-1993",

 "deceasedBoolean":false,
 "address":[

 {
 "line":[

Copyright (c) 2017 Fahim , fahim.shoumik@gmail.com

 "123 Flat3 Hourse no 334"
],

 "city":"Gulshan",
 "state":"Dhaka",

 "postalCode":"1210",
 "country":"Bangladesh",

 "use":"official"
 }

],
 "maritalStatus":{

 "coding":[
 {

 "system":"http://hl7.org/fhir/v3/MaritalStatus",
 "code":"U",

 "display":"Single"
 }

],
 "text":"Never Married"

 },
 "multipleBirthBoolean":true,

 "communication":[
 {

 "language":{
 "coding":[

 {
 "system" : "hl7.org/fhir/ValueSet/languages",

 "code":"bn",
 "display":"Bangla"

 },
 {

 "system" : "hl7.org/fhir/ValueSet/languages",
 "code":"en",

 "display":"English"
 }

]
 },

 "preferred":true
 }

],
 "generalPractitioner": [

 {
 "reference" : "Practitioner/ADH345AR"

 }
]

 "managingOrganization":{
 "reference":"Organization/4567894"

 }
}

Fig 2 : Patient-resource.json

Copyright (c) 2017 Fahim , fahim.shoumik@gmail.com

Example Query Syntax And Their Results

Query Result

$.address[*] [Full Address Array]

$.address[*]?(@.use == \"official\").line 123 Flat3 Hourse no 334

$.maritalStatus.text Never Married

$.communication[*].language.coding[*].code bn en

2. Domain Knowledge
A Domain knowledge gives JYPHER the flexibility for defining what properties from

a JSON data could be a graph node or property because we don’t want to hard code the
domain knowledge inside the Cypher library.

We introduced a domain knowledge in plain simple JSON format so that it could be
changed at anytime without touching the code from inside. Its simple format is easily
readable user will be able to understand what kind of nodes and relationship will be
created if this particular domain knowledge is applied to JYPHER. Fig 3 shows a sample
JSON file that is just a part of larger Domain Knowledge. This JSON data is used as a
model to query Raw JSON file and then it generates a Graph Model based as shown in
the JYPHER architecture in Fig 1.

"graph" : [
 {
 "type" : "resource",

 "id": "$.identifier[*]?(@.use == 'official').id@id",
 "node": "patient",

 "timestamp" : true,
 "properties": [

 "$.name[*]?(@.use == 'official').given@name",
 "$.identifier[*]?(@.use ==

'usual').system@system",
 "$.gender",

 "$.birthDate",
 "$.deceasedBoolean"

]
 },

 {
 "type": "address",

 "id": "%internal.address.city.id",
 "node": "city",

 "properties": [
 "$.address[*]?(@.country='US').city@name"

],
 "relation": [

 {
 "towards" : "patient",

 "name" : "LIVES_IN",
 "direction" : "l"

Copyright (c) 2017 Fahim , fahim.shoumik@gmail.com

 }
]

 }
]

Fig 3 : Domain Knowledge of patient-resource.json called patient-domain.json

If we apply this domain knowledge to the JSON data that we will get this Graph below

Fig 4 : Graph nodes based on Domain Knowledge

3. Graph Model Generation
Based on the Domain Knowledge JYPHER generates a common structure that contains
information like how many nodes the query has to create with node name and its
properties along with relationship information. This model is used as base to generate
Cypher query.

4. Cypher Query Generation
This is the last step of JYPHER . The graph model is converted into a Cypher query and
the Query then get executed in Neo4J Graph Database where it creates a Graph (Fig 5)

MERGE (patient:Patient { id:"HJU345ER" }) ON CREATE SET patient.system =
"https://neuron.care/system/identifier" , patient.name = "Adam", patient.gender = "male" , patient.birthDate =
"10-10-1993" MERGE (city:City { id:"12346" }) ON CREATE SET city.name = "LA" CREATE UNIQUE (city)<-

[:LOCATED_IN]-(patient) MERGE (state:State { id:"52369" }) ON CREATE SET state.name = "NY" CREATE

UNIQUE (state)<-[:SITUATED_IN]-(city) MERGE (organization:Organization { id:"4567894" }) CREATE
UNIQUE (organization)<-[:ADMITTED_IN]-(patient)

Copyright (c) 2017 Fahim , fahim.shoumik@gmail.com

Fig 5 : Property Graph, based on the Sample Query Above

Complete Property Graph of Patient Resource
A Patient Resource has enough information like speaking language, address ,
relative/contract , gender information , the doctor that he visited and in which hospital he is
admitted into. This information will give a Property Graph like below if proper domain
Knowledge is applied.

Fig 6 : Property Graph of Patient Resource

Copyright (c) 2017 Fahim , fahim.shoumik@gmail.com

Extraction of Information
Our aim was to be able to do complex queries but for that we need huge amount of patient
data and proper domain knowledge . However we can now traverse through the graph
using Cypher query to get information. For instance , “show me all the patient who is
admitted into an organization whose id is 4567894 also show me the name of the cities
they live in.” . Corresponding Cypher Query will be

Fig 7 : Cypher Query

Copyright (c) 2017 Fahim , fahim.shoumik@gmail.com

MATCH (o:Organization {id:'4567894'})<-[:ADMITTED_IN]-(n)

MATCH (n)-[:LOCATED_IN]->(c)

RETURN o, n.name ,c.name

