
Setting up CRD, DTR and PAS Reference Implementations (RIs)

The following documentation are instructions on how to set up the complete Coverage
Requirement Discovery (CRD), Documentation Templates and Rule (DTR) and Prior
Authorization Support (PAS) Reference Implementations (RIs). At the end of this you will be
able to use the CRD Request Generator to determine if Prior Authorization and/or required
documentation is necessary (CRD), launch a SMART on FHIR application to complete a
Questionnaire (DTR), and submit the Claim to request Prior Authorization (PAS).

Since there are many projects being used in this sequence it is highly recommended to place all
of them in the same root directory.

Prerequisites

CRD and PAS require Java and Node. The current approved versions are:
Java Oracle or OpenJDK – v8 or v11

Node 12+
Gradle 5.6.2 or 6.3

Setting up the CRD Request Generator

The CRD Request Generator is a helper client application used to send CDS Hooks requests to
CRD, launch the SMART on FHIR application, and submit a Prior Authorization Request. It can be
found at https://github.com/HL7-DaVinci/crd-request-generator. Clone the repo and install
dependencies by running:

$ git clone https://github.com/HL7-DaVinci/crd-request-generator.git

$ cd crd-request-generator
$ npm install

Setting up CRD and CDS Library

The CRD RI can be found at https://github.com/HL7-DaVinci/CRD. Clone and build the repo by
running

$ git clone https://github.com/HL7-DaVinci/CRD.git
$ cd CRD
$ gradle build

A copy of the CDS Library repository needs to be cloned into the CRD repository. Running
embedCdsLibrary will do this by running the steps described below.

$ cd CRD/server
$ gradle embedCdsLibrary

https://github.com/HL7-DaVinci/crd-request-generator
https://github.com/HL7-DaVinci/CRD
https://github.com/HL7-DaVinci/CRD.git

Setting up the Test EHR and Keycloak

To run CRD and DTR a test EHR Server is required. The test EHR Server used in the RIs can be
found at https://github.com/HL7-DaVinci/test-ehr. Clone the repo by running:

$ git clone https://github.com/HL7-DaVinci/test-ehr.git

The EHR Server uses Keycloak to authenticate users. Install and configure Keycloak by doing the
following.

1. Download the Server (Standalone server distribution) from
https://www.keycloak.org/downloads.html

2. Move the downloaded zip file (or tar ball) to the location of the other projects. Unzip
using either

$ unzip keycloak-<version>.zip
$ tar -xf keycloak-<version>.tar.gz

depending on which file was downloaded. The zipped file can now be deleted if desired.
3. Run the Keycloak server:

$ cd keycloak-<version>/bin
$./standalone.sh -Djboss.socket.binding.port-offset=100

4. Once the Keycloak instance is up and running navigate to http://localhost:8180/ to view
it. You should see a screen similar to the one below.

5. On the left side under “Administration Console” create a new admin user.

https://github.com/HL7-DaVinci/test-ehr
https://github.com/HL7-DaVinci/test-ehr.git
https://www.keycloak.org/downloads.html
http://localhost:8180/

6. Click “Administration Console” to login into the Admin Console using the admin user
credentials you just created. After logging in you should see the following screen.

7. Create a new Realm to protect the test-ehr by:
a. Hover over “Master” in the top left and click the “Add Realm” button.
b. Import the realm by clicking “Select file” next to import. Select {Path to test-ehr}

/src/main/resources/ClientFhirServerRealm.json This will automatically fill in the
details on the Add Relam page. Click “Create” to continue.

8. Create a new user for the ClientFhirServer Realm:
a. Next create a new user by navigating to the “Users” tab under the “Manage”

section of the left sidebar. There should currently be no users listed. On the
right click “Add User” to create the new user.

b. Give the new user a Username and click “Save”.
c. Give the new user a password by navigating to the newly visible “Credentials”

tab. Before setting the password ensure the slider next to “Temporary” is off.
d. Give the new user the role of “user” by navigating to the “Role Mappings” tab,

clicking “user” in the “Available Roles” selection, and then clicking “Add
Selected”.

Setting up DTR

The DTR RI can be found at https://github.com/HL7-DaVinci/dtr. Clone the repo and install
dependencies by running

$ git clone https://github.com/HL7-DaVinci/dtr.git

$ cd dtr
$ npm install

https://github.com/HL7-DaVinci/dtr

By default, DTR will run as https. When running the server locally you will most likely want to
run it as http instead. Do this by opening {Path to DTR}/webpack.config.dev.js and editing line
19 to set https to false.

Setting up PAS

The PAS RI can be found at https://github.com/HL7-DaVinci/prior-auth. Clone and build the
repo by running

$ git clone https://github.com/HL7-DaVinci/prior-auth.git
$ cd prior-auth
$./gradlew installBootDist

Using the Request Generator to Submit a Prior Authorization

To use the CRD Request Generator to submit a Claim to the Prior Auth RI we begin by launching
each service in a new terminal window:

$ cd {Path to CRD}/server
$ gradle bootRun

$ cd {Path to test-ehr}
$ gradle appRun

$ cd {Path to Keycloak}/bin
$./standalone.sh -Djboss.socket.binding.port-offset=100

$ cd {Path to DTR}
$ npm start

$ cd {Path to PAS}
$./gradlew bootRun

$ cd {Path to CRD Request Generator}
$ npm start

https://github.com/HL7-DaVinci/prior-auth

The final command will launch the Request Generator in a new browser window. If it does not
open automatically navigate to http://localhost:3000/ehr-server/reqgen to view the Request
Generator. At the end of this document there is a table to map service name to location (port).

Before using the Request Generator there are a few more steps to configure the running
servers. First test data is loaded into the EHR Server. Execute the following once the EHR Server
is up and running:

$ cd {Path to test-ehr}
$ gradle loadData --stacktrace

Finally, we must update DTR to use the test EHR. Navigate to http://localhost:3005/register
and add http://localhost:8080/test-ehr/r4 as the FHIR Server (iss) and “app-login” for the Client
Id. If a previous FHIR Server is listed under “Current Client Ids” for the Client Id “app-login” then
remove it by clicking the “x” next to it.

Now we are finally ready to proceed. Navigate to the Request Generator in your browser. After
selecting R4 in the nav bar, select a patient. For this demo we will select Vlad Quinton (pat013)
and in the dropdown for DeviceRequest select E0424. The information on the left panel will
update automatically. Click “Submit” and the right side will populate with at least one card as
shown below:

http://localhost:3000/ehr-server/reqgen
http://localhost:3005/register
http://localhost:8080/test-ehr/r4

Since authorization is required, we launch the SMART App to complete the Questionnaire by
clicking on “Open Form”. This will open in a new page and Keycloak will ask you to
authenticate. Log in with the user created in Step 8 of Setting up CRD and Keycloak. After
successfully authenticating the Questionnaire will be displayed with as many responses
preloaded from the Patient (as shown below).

After all responses have been provided click “Next” at the end of the form. You will now be
presented with a page to select the Prior Authorization Endpoint. Select the desired endpoint
from the drown down and then send the prior auth to the server by clicking “Submit”.

After the request is sent and a response is received the disposition from the payer will be
displayed on a page similar to the one below:

On the left is the raw ClaimResponse resource returned by the payer. The right panel contains
human readable details as well as action items. If the disposition is “Pending” (or the outcome
is “queued”) then you can subscribe to updates. Select the type of Subscription from the
“Select Type” dropdown and then confirm the subscription by clicking the “Subscribe” button.

If WebSockets are selected, a ws connection is established between your browser and the PAS
server. As soon as an update is available the browser will update automatically. Another option
is Polling which will periodically check the PAS server for an update. The RestHook subscriptions

require a server which exposes REST endpoints. This functionality is not available through the
browser. However, if you had another server configured to accept and process these updates
then the subscription can still be created through this UI.

CRD, DTR, and PAS Service to Location (Port) Mappings

Service Name Location

CRD Server http://localhost:8090
EHR Server http://localhost:8080/test-ehr

Keycloak http://localhost:8180

DTR http://localhost:3005
Prior Auth http://localhost:9000

CRD Request Generator http://localhost:3000

	Setting up CRD, DTR and PAS Reference Implementations (RIs)
	Prerequisites
	Setting up the CRD Request Generator
	Setting up CRD and CDS Library
	Setting up the Test EHR and Keycloak
	Setting up DTR
	Setting up PAS
	Using the Request Generator to Submit a Prior Authorization
	CRD, DTR, and PAS Service to Location (Port) Mappings

