
General comment: menu links have different order than ToC.

Overview	Comment by Heuvel, Bas van den: The headings in the top row are not clear and some critical sections are not obvious. Conformance should be visible.
· Discovery of Server Capabilities and Configuration
· SMART Defines Two Patterns For Client Authorization
· SMART Defines Two Patterns For Client Authentication
· Scopes for Limiting Acess
· Token Introspection
This implementation guide describes a set of foundational patterns based on OAuth 2.0 for client applications to authorize, authenticate, and integrate with FHIR-based data systems. The patterns defined in this specification are introduced in the sections below.

Discovery of Server Capabilities and Configuration
SMART defines a discovery document available at .well-known/smart-configuration relative to a FHIR Server Base URL, allowing clients to learn the authorization endpoint URLs and features a server supports. This information helps client direct authorization requests to the right endpoint, and helps clients construct an authorization request that the server can support.
SMART Defines Two Patterns For Client Authorization
Authorization via SMART App Launch
Authorizes a user-facing client application (“App”) to connect to a FHIR Server. This pattern allows for “launch context” such as currently selected patient to be shared with the app, based on a user’s session inside an EHR or other health data software, and allows for delegation of a user’s permissions to the app itself.	Comment by Heuvel, Bas van den: Seams to suggest this is EHR only which is different from the approach defined in 4.0.3
Authorization via SMART Backend Services
Authorizes a headless or automated client application (“Backend Service”) to connect to a FHIR Server. This pattern allows for backend services to connect and interact with an EHR when there is no user directly involved in the launch process, or in other circumstances where permissions are assigned to the client out-of-band.
SMART Defines Two Patterns For Client Authentication
When clients need to authenticate, this implementation guide defines two methods.
Note that client authentication is not required in all authorization scenarios, and not all SMART clients are capable of authenticating (see discussion of “Public Clients” in the SMART App Launch overview).
Asymmetric (“private key JWT”) authentication
Authenticates a client using an asymmetric keypair. This is SMART’s preferred authentication method because it avoids sending a shared secret over the wire.
Symmetric (“client secret”) authentication
Authenticate a client using a secret that has been pre-shared between the client and server.
Scopes for Limiting AcessAccess
SMART uses a language of “scopes” to define specific access permissions that can be delegated to a client application. These scopes draw on FHIR API definitions for interactions, resource types, and search paramtersparameters to describe a permissions model. For example, an app might be granted scopes like user/Encounter.rs, allowing it to read and search for Encounters that are accessible to the user who has authorized the app. Similarly, a backend service might be granted scopes like system/Encounter.rs, allowing it to read and search for Encounters within the overall set of data it is configured to access. User-facing apps can also receive “launch context” to indicate details about the current patient or other aspects of a user’s EHR session or a user’s selections when launching the app.
Note that the scope syntax has changed since SMARTv1. Details are at Scopes for requesting clinical data.
Token Introspection
SMART defines a Token Introspection API allowing Resource Servers or software components to understand the scopes, users, patients, and other context associated with access tokenestokens. This pattern allows a looseerlooser coupling between Resource Servers and Authorization Servers.
	
2 App Launch
· Profile audience and scope
· Security and Privacy Considerations
· SMART authorization & FHIR access: overview
· Top-level steps for SMART App Launch
· Register App with EHR
· Launch App: Standalone Launch
· Launch App: EHR Launch
· Retrieve .well-known/smart-configuration
· Obtain authorization code
· Obtain access token
· Access FHIR API
· Refresh access token
The SMART App Launch Framework connects third-party applications to Electronic Health Record data, allowing apps to launch from inside or outside the user interface of an EHR system. The framework supports apps for use by clinicians, patients, and others via a PHR or Patient Portal or any FHIR system where a user can launch an app. It provides a reliable, secure authorization protocol for a variety of app architectures, including apps that run on an end-user’s device as well as apps that run on a secure server. The Launch Framework supports four key use cases:
1. Patients apps that launch standalone
2. Patient apps that launch from a portal
3. Provider apps that launch standalone
4. Provider apps that launch from a portal
These use cases support apps that perform data visualization, data collection, clinical decision support, data sharing, case reporting, and many other functions.
Profile audience and scope
This profile is intended to be used by developers of apps that need to access user identity information or other FHIR resources by requesting authorization from OAuth 2.0 compliant authorization servers. It is compatible with FHIR R2 (DSTU2) and later; this publication includes explicit definitions for FHIR R4.	Comment by Heuvel, Bas van den: Be consistent – when referring to this specification, is it a profile, specification, publication? Choose one. I suggest specitication.
OAuth 2.0 authorization servers are configured to mediate access based on a set of rules configured to enforce institutional policy, which may include requesting end-user authorization. This profile does not dictate the institutional policies that are implemented in the authorization server.
The profile defines a method through which an app requests authorization to access a FHIR resource, and then uses that authorization to retrieve the resource. Synchronization of patient context is not addressed; for use cases that require context synchronization (e.g., learning about when the in-context patient changes within an EHR session) see FHIRcast. In other words, if the patient chart is changed during the session, the application will not inherently be updated.
Other sSecurity mechanisms, such as those mandated by HIPAA in the US (end-user authentication, session time-out, security auditing, and accounting of disclosures) are outside the scope of this profile.	Comment by Heuvel, Bas van den: Other does not make sense
This profile provides a mechanism to delegate an entity’s permissions (e.g., a user’s permissions) to a 3rd-party app. The profile includes mechanisms to delegate a limited subset of an entity’s permissions (e.g., only sharing access to certain data types). However, this profile does not model the permissions that the entity has in the first place (e.g., it provides no mechanism to specify that a given entity should or should not be able to access specific records in an EHR). Hence, this profile is designed to work on top of an EHR’s existing user and permissions management system, enabling a standardized mechanism for delegation.
Security and Privacy Considerations
App protection
The app is responsible for protecting itself from potential misbehaving or malicious values passed to its redirect URL (e.g., values injected with executable code, such as SQL) and for protecting authorization codes, access tokens, and refresh tokens from unauthorized access and use. The app developer must be aware of potential threats, such as malicious apps running on the same platform, counterfeit authorization servers, and counterfeit resource servers, and implement countermeasures to help protect both the app itself and any sensitive information it may hold. For background, see the OAuth 2.0 Threat Model and Security Considerations.
Specific requirements are:
· Apps SHALL ensure that sensitive information (authentication secrets, authorization codes, tokens) is transmitted ONLY to authenticated servers, over TLS-secured channels.
· Apps SHALL generate an unpredictable state parameter for each user session; SHALL include state with all authorization requests; and SHALL validate the state value included in for any requests sent to its redirect URL.
· An app SHALL NOT execute untrusted user-supplied inputs as code.
· An app SHALL NOT forward values passed back to its redirect URL to any other arbitrary or user-provided URL (a practice known as an “open redirector”).
· An app SHALL NOT store bearer tokens in cookies that are transmitted as clear text.	Comment by Heuvel, Bas van den: Is an http-only coockie send oper TLS considered to be in the clear? I assume it this, just wanted to check.
· Apps SHOULD persist tokens and other sensitive data in app-specific storage locations only, and SHOULD NOT persist them in system-wide-discoverable locations.
Support for “public” and “confidential” apps
Within this profile we differentiate between the two types of apps defined in the OAuth 2.0 specification: confidential and public. The differentiation is based upon whether the execution environment within which the app runs enables the app to protect secrets. Pure client-side apps (for example, HTML5/JS browser-based apps, iOS mobile apps, or Windows desktop apps) can provide adequate security, but they may be unable to “keep a secret” in the OAuth2 sense. In other words, any “secret” key, code, or string that is statically embedded in the app can potentially be extracted by an end-user or attacker. Hence security for these apps cannot depend on secrets embedded at install-time.
For strategies and best practices to protecting a client secret refer to:
· OAuth 2.0 Threat Model and Security Considerations: 4.1.1. Threat: Obtaining Client Secrets
· OAuth 2.0 for Native Apps: 8.5. Client Authentication
· OAuth 2.0 Dynamic Client Registration Protocol
Use the confidential app profile if your app is able to protect a secret
for example:
· App runs on a trusted server with only server-side access to the secret
· App is a native app that uses additional technology (such as dynamic client registration and universal redirect_uris) to protect the secret
Use the public app profile if your app is unable to protect a secret
for example:
· App is an HTML5 or JS in-browser app (including single-page applications) that would expose the secret in user space
· App is a native app that can only distribute a secret statically
Considerations for PKCE Support
All SMART apps SHALL support Proof Key for Code Exchange (PKCE). PKCE is a standardized, cross-platform technique for clients to mitigate the threat of authorization code interception or injection. PKCE is described in IETF RFC 7636. SMART servers SHALL support the S256 code_challenge_method and SHALL NOT support the plain method.
Related reading
Implementers can review the OAuth Security Topics guidance from IETF as a collection of Best Current Practices.
Some resources shared with apps following this IG may be considered Patient Sensitive; implementers should review the Core FHIR Specification’s Security Page for additional security and privacy considerations.
SMART authorization & FHIR access: overview
An app can launch from within an existing EHR or Patient Portal session; this is known as an EHR launch. Alternatively, it can launch as a standalone app.
In an EHR launch, an opaque handle to the EHR context is passed along to the app as part of the launch URL. The app later will include this context handle as a request parameter when it requests authorization to access resources. The server will provide the application with information on the context based on this handle. Note that the complete URLs of all apps approved for use by users of this EHR will have been registered with the EHR authorization server.	Comment by Heuvel, Bas van den: This sounds like a Security and Privacy thingy.
Alternatively, iIn a standalone launch, when the app launches from outside an EHR session, the app can request context from the EHR authorization server. The context will then be determined during the authorization process as described below.	Comment by Heuvel, Bas van den: Such process is only allowed for stand alone?
Once an app receives a launch request, it requests authorization to access a FHIR resources by causing instructing the browser to navigate to the EHR’s authorization endpoint. Based on pre-defined rules and possibly end-user authorization, the EHR authorization server either grants the request by returning an authorization code to the app’s redirect URL, or denies the request. The app then exchanges the authorization code for an access token, which the app presents to the EHR’s resource server to access requested FHIR resources. If a refresh token is returned along with the access token, the app may use this to request a new access token, with the same scope, once the access token expires.
Top-level steps for SMART App Launch
The top-level steps for Smart App Launch are:
1. Register App with EHR (one-time step, can be out-of-band)
2. Launch App: Standalone Launch or EHR Launch
3. Retrieve .well-known/smart-configuration
4. Obtain authorization code
5. Obtain access token
6. Access FHIR API
7. Refresh access token
AppAppEHR with Authorization ServerEHR with Authorization ServerFHIR ServerFHIR Serveropt[Precondition: Client Registration](may be out of band)alt[EHR Launch]EHR userlaunches appLaunch request[Standalone Launch]App userconnects to EHRDiscovery requestDiscovery responseAuthorization requestoptEHR incorporates user inputinto authorization decisionalt[Granted]Authorization grantedAccess token requestAccess token responseRequest Resources[Denied]Authorization error

The actors involved in each step and the order in which are used is illustrated in the figure below.
[image:]
More detail on each of these steps is provided in the sections below.	Comment by Heuvel, Bas van den: How does this table relate to the steps above?

Different terms are used which make the list/diagram confusing. I would align the terms.

Optionally group them with separator (e.g. === Obtain Authorization Code ===) or notes.

User input is not only used for determining authorization, also for context.
Register App with EHR
Note: this is a one-time setup step, and can occur out-of-band.
Before a SMART app can run against an EHR, the app must be registered with that EHR’s authorization service. SMART does not specify a standards-based registration process, but we encourage EHR implementers to consider the OAuth 2.0 Dynamic Client Registration Protocol for an out-of-the-box solution.
Note: this is a one-time setup step, and can occur out-of-band.
Request
No matter how an app registers with an EHR’s authorization service, at registration time every SMART app must:	Comment by Heuvel, Bas van den: Lower case? If not upper case, remove must. (I think it uppercase)
· Register zero or more fixed, fully-specified launch URL with the EHR’s authorization server
· Register one or more fixed, fully-specified redirect_uris with the EHR’s authorization server. Note: In the case of native clients following the OAuth 2.0 for Native Apps specification (RFC 8252), it may be appropriate to leave the port as a dynamic variable in an otherwise fixed redirect URI.
For confidential clients, additional registration-time requirements are defined based on the client authentication method.
· For asymmetric client authentication: a JSON Web Key Set or JWSK URL is established
· For symmetric client authentication: a client secret is established
Response
The EHR confirms the app’s registration parameters and communicates a client_id to the app.	Comment by Heuvel, Bas van den: And secret?
Launch App: Standalone Launch
In SMART’s standalone launch flow, a user selects an app from outside the EHR, for example by tapping an app icon on a mobile phone home screen.	Comment by Heuvel, Bas van den: App require the use of redirects using the app-specific protocol. It is a compatible with but not so clear as a straight web-based launch. Is this the main use case? Should we not use a web-page as the main example/.
Request
There is no explicit request associated with this step of the SMART App Launch process. The app proceeds to the next step of the SMART App Launch flow.	Comment by Heuvel, Bas van den: Is this true, isn’t the app/webpage launched? It will than take the iss value and retrieve the auth endpoints….	Comment by Heuvel, Bas van den: More to response
Response
N/A
Examples
· Public client
· Confidential client, asymmetric authentication
· Confidential client, symmetric authentication
Launch App: EHR Launch
In SMART’s EHR launch flow, a user has established an EHR session, and then decides to launch an app. This could be a single-patient app (which runs in the context of a patient record), or a user-level app (like an appointment manager or a population dashboard).
Request
The EHR initiates a “launch sequence” by opening a new browser instance (or iframe) pointing to the app’s registered launch URL and passing some context.
The following parameters are included:
	Parameters

	iss
	required
	Identifies the EHR's FHIR endpoint, which the app can use to obtain additional details about the EHR, including its authorization URL.

	launch
	required
	Opaque identifier for this specific launch, and any EHR context associated with it. This parameter must be communicated back to the EHR at authorization time by passing along a launch parameter (see example below).

For example
A launch might cause the browser to navigate to:
Location: https://app/launch?iss=https%3A%2F%2Fehr%2Ffhir&launch=xyz123
On receiving the launch notification, the app would query the issuer’s .well-known/smart-configuration endpoint which contains (among other details) the EHR’s identifying the OAuth authorize and token endpoint URLs for use in requesting authorization to access FHIR resources.	Comment by Heuvel, Bas van den: This is not part of this requrest but the next.
Later, when the app prepares its authorization request, it includes launch as a requested scope and includes a launch={launch id} URL parameter, echoing the value it received from the EHR in this notification.
Response
The app proceeds to the next step of the SMART App Launch flow.	Comment by Heuvel, Bas van den: Do we need to mention this? If so, we could follow IHE and add a trigger event section to a step.
Retrieve .well-known/smart-configuration
In order to obtain launch context and request authorization to access FHIR resources, the app discovers the EHR FHIR server’s SMART configuration metadata, including OAuth authorization_endpoint and token_endpoint URLs.
Request
The discovery URL is constructed by appending .well-known/smart-configuration to the FHIR Base URL. The app issues an HTTP GET to the discovery URL with an Accept header supporting application/json.
Response
The EHR responds with a SMART configuration JSON document as described in conformance
Examples
· Example request and response
Obtain authorization code
To proceed with a launch, the app constructs a request for an authorization code.
Request
The app supplies the following parameters to the EHR’s “authorize” endpoint.
Note on PKCE Support: the EHR SHALL ensure that the code_verifier is present and valid when the code is exchanged for an access token.
	Parameters

	response_type
	required
	Fixed value: code.

	client_id
	required
	The client's identifier.

	redirect_uri
	required
	Must match one of the client's pre-registered redirect URIs.

	Launch
	conditional
	When using the EHR Launch flow, this must match the launch value received from the EHR. Omitted when using the Standalone Launch.

	Scope
	required
	Must describe the access that the app needs, including scopes like patient/*.rs, openid and fhirUser (if app needs authenticated patient identity) and either:
· a launch value indicating that the app wants to receive already-established launch context details from the EHR
· a set of launch context requirements in the form launch/patient, which asks the EHR to establish context on your behalf.
See SMART on FHIR Access Scopes details.

	State
	required
	An opaque value used by the client to maintain state between the request and callback. The authorization server includes this value when redirecting the user-agent back to the client. The parameter SHALL be used for preventing cross-site request forgery or session fixation attacks. The app SHALL use an unpredictable value for the state parameter with at least 122 bits of entropy (e.g., a properly configured random uuid is suitable).

	aud
	required
	URL of the EHR resource server from which the app wishes to retrieve FHIR data. This parameter prevents leaking a genuine bearer token to a counterfeit resource server. (Note: in the case of an EHR launch flow, this aud value is the same as the launch's iss value.) Note that the aud parameter is semantically equivalent to the resource parameter defined in RFC8707. SMART's aud parameter predates RFC8707 and we have decided not to rename it for reasons of backwards compatibility. We might consider renaming SMART's aud parameter in the future if implementer feedback indicates that alignment would be valuable. For the current release, servers SHALL support the aud parameter and MAY support a resource parameter as a synonym for aud.

	code_challenge
	required
	This parameter is generated by the app and used for the code challenge, as specified by PKCE. For example, when code_challenge_method is 'S256', this is the S256 hashed version of the code_verifier parameter. See considerations-for-pkce-support.

	code_challenge_method
	required
	Method used for the code_challenge parameter. Example value: S256. See considerations-for-pkce-support.

The app SHOULD limit its requested scopes to the minimum necessary (i.e., minimizing the requested data categories and the requested duration of access).
If the app needs to authenticate the identify identity of or retrieve information about the end-user, it should include two OpenID Connect scopes: openid and fhirUser. When these scopes are requested, and the request is granted, the app will receive an id_token along with the access token. For full details, see SMART launch context parameters.
The following requirements are adopted from OpenID Connect Core 1.0 Specification section 3.1.2.1:
· Authorization Servers SHALL support the use of the HTTP GET and POST methods at the Authorization Endpoint.
· Clients SHALL use either the HTTP GET or the HTTP POST method to send the Authorization Request to the Authorization Server. If using the HTTP GET method, the request parameters are serialized using URI Query String Serialization. If using the HTTP POST method, the request parameters are serialized using Form Serialization and the application/x-www-form-urlencoded content type.
For example
If an app needs demographics and observations for a single patient, and alsoand wants information about the current logged-in user, the app can request:	Comment by Heuvel, Bas van den: Why does it need to search for the patient. .r is enough.
· patient/Patient.rs
· patient/Observation.rs
· openid fhirUser
If the app was launched from an EHR, the app adds a launch scope and a launch={launch id} URL parameter, echoing the value it received from the EHR to be associated with the EHR context of this launch notification.
Apps using the standalone launch flow won’t have a launch id at this point. These apps can declare launch context requirements by adding specific scopes to the authorization request: for example, launch/patient to indicate that the app needs a patient ID, or launch/encounter to indicate it needs an encounter. The EHR’s “authorize” endpoint will take care of acquiring the context it needs (making it available to the app).
For example, if your app needs patient context, the EHR may provide the end-user with a patient selection widget. For full details, see SMART launch context parameters.	Comment by Heuvel, Bas van den: Is this only allowed for standalone?
The app then causes the browser to navigate the browser to the EHR’s authorization URL as determined above. For example to cause the browser to issue a GET:
Location: https://ehr/authorize?
 response_type=code&
 client_id=app-client-id&
 redirect_uri=https%3A%2F%2Fapp%2Fafter-auth&
 launch=xyz123&
 scope=launch+patient%2FObservation.rs+patient%2FPatient.rs+openid+fhirUser&
 state=98wrghuwuogerg97&
 aud=https://ehr/fhir
Alternatively, the following example shows one way for a client app to cause the browser to issue a POST, using HTML and javascript:
<html>
 <body onload="javascript:document.forms[0].submit()">
 <form method="post" action="https://ehr/authorize">
 <input type="hidden" name="response_type" value="code"/>
 <input type="hidden" name="client_id" value="app-client-id"/>
 <input type="hidden" name="redirect_uri" value="https://app/after-auth"/>
 <input type="hidden" name="launch" value="xyz123"/>
 <input type="hidden" name="scope" value="launch patient/Observation.rs patient/Patient.rs openid fhirUser"/>
 <input type="hidden" name="state" value="98wrghuwuogerg97"/>
 <input type="hidden" name="aud" value="https://ehr/fhir"/>
 </form>
 </body>
</html>
Response
The authorization decision is up to the EHR authorization server, which may request authorization from the end-user. The EHR authorization server will enforce access rules based on local policies and optionally direct end-user input.
The EHR decides whether to grant or deny access. This decision is communicated to the app when the EHR authorization server returns an authorization code (or, if denying access, an error response). Authorization codes are short-lived, usually expiring within around one minute. The code is sent when the EHR authorization server causes instructs the browser to navigate to the app’s redirect_uri, with the following URL parameters:
	Parameters

	code
	required
	The authorization code generated by the authorization server. The authorization code *must* expire shortly after it is issued to mitigate the risk of leaks.

	state
	required
	The exact value received from the client.

The app SHALL validate the value of the state parameter upon return to the redirect URL and SHALL ensure that the state value is securely tied to the user’s current session (e.g., by relating the state value to a session identifier issued by the app).
For example
Based on the client_id, current EHR user, configured policy, and perhaps direct user input, the EHR makes a decision to approve or deny access. This decision is communicated to the app by causing instructing the browser to navigate redirect to the app’s registered redirect_uri. For example:
Location: https://app/after-auth?
 code=123abc&
 state=98wrghuwuogerg97
Examples
· Public client
· Confidential client, asymmetric authentication
· Confidential client, symmetric authentication
Obtain access token
After obtaining an authorization code, the app trades the code for an access token.
Request
The app issues an HTTP POST to the EHR authorization server’s token endpoint URL, using content-type application/x-www-form-urlencoded, as described in section 4.1.3 of RFC6749.
For public apps, authentication is not possible (and thus not required), since a client with no secret cannot prove its identity when it issues a call. (The end-to-end system can still be secure because the client comes from a known, https protected endpoint specified and enforced by the redirect uri.) For confidential apps, authentication is required. Confidential clients SHOULD use Asymmetric Authentication if available, and MAY use Symmetric Authentication.
	Parameters

	grant_type
	required
	Fixed value: authorization_code

	code
	required
	Code that the app received from the authorization server

	redirect_uri
	required
	The same redirect_uri used in the initial authorization request

	code_verifier
	required
	This parameter is used to verify against the code_challenge parameter previously provided in the authorize request.

	client_id
	conditional
	Required for public apps. Omit for confidential apps.

Response
The EHR authorization server SHALL return a JSON object that includes an access token or a message indicating that the authorization request has been denied. The JSON structure includes the following parameters:
	Parameters

	access_token
	required
	The access token issued by the authorization server

	token_type
	required
	Fixed value: Bearer

	expires_in
	recommended
	Lifetime in seconds of the access token, after which the token SHALL NOT be accepted by the resource server

	scope
	required
	Scope of access authorized. Note that this can be different from the scopes requested by the app.

	id_token
	optional
	Authenticated user identity and user details, if requested

	refresh_token
	optional
	Token that can be used to obtain a new access token, using the same or a subset of the original authorization grants

In addition, if the app was launched from within a patient context, parameters to communicate the context values MAY BE included. For example, a parameter like "patient": "123" would indicate the FHIR resource https://[fhir-base]/Patient/123. Other context parameters may also be available. For full details see SMART launch context parameters.	Comment by Heuvel, Bas van den: Add the word “section” or “chapter” to such references to distinguish them from other references.
The parameters are included in the entity-body of the HTTP response, as described in section 5.1 of RFC6749.
The access token is a string of characters as defined in RFC6749 and RFC6750. The token is essentially a private message that the authorization server passes to the FHIR Resource Server, telling the FHIR server that the “message bearer” has been authorized to access the specified resources.
Defining the format and content of the access token is left up to the organization that issues the access token and holds the requested resource.
The authorization server’s response SHALL include the HTTP “Cache-Control” response header field with a value of “no-store,” as well as the “Pragma” response header field with a value of “no-cache.”
The EHR authorization server decides what expires_in value to assign to an access token and whether to issue a refresh token, as defined in section 1.5 of RFC6749, along with the access token. If the app receives a refresh token along with the access token, it can exchange this refresh token for a new access token when the current access token expires (see step 5 below).
Apps SHOULD store tokens in app-specific storage locations only, not in system-wide-discoverable locations. Access tokens SHOULD have a valid lifetime no greater than one hour. Confidential clients may be issued longer-lived tokens than public clients.
A large range of threats to access tokens can be mitigated by digitally signing the token as specified in RFC7515 or by using a Message Authentication Code (MAC) instead. Alternatively, an access token can contain a reference to authorization information, rather than encoding the information directly into the token itself.
To be effective, such references must be infeasible for an attacker to guess. Using a reference may require an extra interaction between the resource server and the authorization server; the mechanics of such an interaction are not defined by this specification.
At this point, the authorization flow is complete. Follow steps below to work with data and refresh access tokens, as shown in the following sequence diagram.	Comment by Heuvel, Bas van den: See comments on trigger conditions.
Examples
· Public client
· Confidential client, asymmetric authentication
· Confidential client, symmetric authentication
Access FHIR API	Comment by Heuvel, Bas van den: Add step numbers, or codes. E.g. SoF-4 or Step-4 .
With a valid access token, the app can access protected EHR data by issuing a FHIR API call to the FHIR endpoint on the EHR’s resource server.
Request
From the access token resopnse, an app has received an OAuth2 bearer-type access token (access_token property) that can be used to fetch clinical data. The app issues a request that includes an Authorization header that presents the access_token as a “Bearer” token:
Authorization: Bearer {{access_token}}
(Note that in a real request, {{access_token}} is replaced with the actual token value.)
Response
The resource server SHALL validate the access token and ensure that it has not expired and that its scope covers the requested resource. The resource server also validates that the aud parameter associated with the authorization (see above) matches the resource server’s own FHIR endpoint. The method used by the EHR to validate the access token is beyond the scope of this specification but generally involves an interaction or coordination between the EHR’s resource server and the authorization server.	Comment by Heuvel, Bas van den: Refer to step 4
On occasion, an app may receive a FHIR resource that contains a “reference” to a resource hosted on a different resource server. The app SHOULD NOT blindly follow such references and send along its access_token, as the token may be subject to potential theft. The app SHOULD either ignore the reference, or initiate a new request for access to that resource.
Example Request and Response
Example
GET https://ehr/fhir/Patient/123
Authorization: Bearer i8hweunweunweofiwweoijewiwe
Response
{
 "resourceType": "Patient",
 "birthTime": ...
}
Refresh access token
Refresh tokens are issued to enable sessions to last longer than the validity period of an access token. The app can use the expires_in field from the token response (see step 5) to determine when its access token will expire. EHR implementers are also encouraged to consider using the OAuth 2.0 Token Introspection Protocol to provide an introspection endpoint that clients can use to examine the validity and meaning of tokens. An app with “online access” can continue to get new access tokens as long as the end-user remains online. Apps with “offline access” can continue to get new access tokens without the user being interactively engaged for cases where an application should have long-term access extending beyond the time when a user is still interacting with the client.	Comment by Heuvel, Bas van den: This is more clear, we should add it to the name as well.
The app requests a refresh token in its authorization request via the online_access or offline_access scope (see SMART on FHIR Access Scopes for details). A server can decide which client types (public or confidential) are eligible for offline access and able to receive a refresh token. If granted, the EHR supplies a refresh_token in the token response. A refresh token SHALL BE bound to the same client_id and SHALL contain the same, or a subset of, the set of claims authorized for the access token with which it is associated. After an access token expires, the app requests a new access token by providing its refresh token to the EHR’s token endpoint.]
Request
An HTTP POST transaction is made to the EHR authorization server’s token URL, with content-type application/x-www-form-urlencoded. The decision about how long the refresh token lasts is determined by a mechanism that the server chooses. For clients with online access, the goal is to ensure that the user is still online.
· For public apps, authentication is not possible (and thus not required). For confidential apps, see authentication considerations in step 5.
The following request parameters are defined:
	Parameters

	grant_type
	required
	Fixed value: refresh_token.

	refresh_token
	required
	The refresh token from a prior authorization response

	scope
	optional
	The scopes of access requested. If present, this value must be a strict sub-set of the scopes granted in the original launch (no new permissions can be obtained at refresh time). A missing value indicates a request for the same scopes granted in the original launch.

Response
The response is a JSON object containing a new access token, with the following claims:
	JSON Object property name

	access_token
	required
	New access token issued by the authorization server.

	token_type
	required
	Fixed value: bearer

	expires_in
	required
	The lifetime in seconds of the access token. For example, the value 3600 denotes that the access token will expire in one hour from the time the response was generated.

	scope
	required
	Scope of access authorized. Note that this will be the same as the scope of the original access token, and it can be different from the scopes requested by the app.

	refresh_token
	optional
	The refresh token issued by the authorization server. If present, the app should discard any previous refresh_token associated with this launch, replacing it with this new value.

In addition, if the app was launched from within a patient context, parameters to communicate the context values MAY BE included. For example, a parameter like "patient": "123" would indicate the FHIR resource https://[fhir-base]/Patient/123. Other context parameters may also be available. For full details see SMART launch context parameters.
Examples
· Public client
· Confidential client, asymmetric authentication
· Confidential client, symmetric authentication
2,1 Example App Launch for Public Client	Comment by Heuvel, Bas van den: Something strange is happening to the headers.
· Example: App Launch with Asymmetric Authentication
· Launch App
· Retrieve .well-known/smart-configuration
· Obtain authorization code
· Retrieve access token
· Access FHIR API
· Refresh access token
2.1 Example: App Launch with Asymmetric Authentication
Launch App
This is a user-driven stepm triggering the subsequent workflow.
In this example, the launch is initiated aginst a FHIR server with a base URL of:
https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/fhir
… and the app’s redirect URL has been registered as:
https://sharp-lake-word.glitch.me/graph.html
… and the app has been registered as a public client, assigned a client_id of:
demo_app_whatever
Retrieve .well-known/smart-configuration
curl -s 'https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/fhir/.well-known/smart-configuration' \
 -H 'accept: application/json'

{
 "authorization_endpoint": "https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/authorize",
 "token_endpoint": "https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/token",
 "introspection_endpoint": "https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/introspect",
 "code_challenge_methods_supported": [
 "S256"
],
 "grant_types_supported": [
 "authorization_code"
],
 "token_endpoint_auth_methods_supported": [
 "private_key_jwt",
 "client_secret_basic"
],
 "token_endpoint_auth_signing_alg_values_supported": [
 "RS384",
 "ES384"
],
 "scopes_supported": [
 "openid",
 "fhirUser",
 "launch",
 "launch/patient",
 "patient/*.cruds"
 "user/*.cruds",
 "offline_access"
],
 "response_types_supported": [
 "code"
],
 "capabilities": [
 "launch-ehr",
 "launch-standalone",
 "client-public",
 "client-confidential-symmetric",
 "client-confidential-asymmetric",
 "context-passthrough-banner",
 "context-passthrough-style",
 "context-ehr-patient",
 "context-ehr-encounter",
 "context-standalone-patient",
 "context-standalone-encounter",
 "permission-offline",
 "permission-patient",
 "permission-user",
 "permission-v2",
 "authorize-post"
]
}
Obtain authorization code
Generate a PKCE code challenge and verifier, then redirect browser to the authorize_endpoint from the discovery response (newlines added for clarity):
https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/authorize?
 response_type=code&
 client_id=demo_app_whatever&
 scope=launch%2Fpatient%20patient%2FObservation.rs%20patient%2FPatient.rs%20offline_access&
 redirect_uri=https%3A%2F%2Fsharp-lake-word.glitch.me%2Fgraph.html&
 aud=https%3A%2F%2Fsmart.argo.run%2Fv%2Fr4%2Fsim%2FeyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ%2Ffhir&state=0hJc1S9O4oW54XuY&
 code_challenge=YPXe7B8ghKrj8PsT4L6ltupgI12NQJ5vblB07F4rGaw&
 code_challenge_method=S256
Receive authorization code when EHR redirects the browser back to (newlines added for clarity):
https://sharp-lake-word.glitch.me/graph.html?
 code=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwiY29kZV9jaGFsbGVuZ2VfbWV0aG9kIjoiUzI1NiIsImNvZGVfY2hhbGxlbmdlIjoiWVBYZTdCOGdoS3JqOFBzVDRMNmx0dXBnSTEyTlFKNXZibEIwN0Y0ckdhdyIsInNjb3BlIjoibGF1bmNoL3BhdGllbnQgcGF0aWVudC9PYnNlcnZhdGlvbi5ycyBwYXRpZW50L1BhdGllbnQucnMiLCJyZWRpcmVjdF91cmkiOiJodHRwczovL3NoYXJwLWxha2Utd29yZC5nbGl0Y2gubWUvZ3JhcGguaHRtbCIsImlhdCI6MTYzMzUzMjAxNCwiZXhwIjoxNjMzNTMyMzE0fQ.xilM68Bavtr9IpklYG-j96gTxAda9r4Z_boe2zv3A3E&
 state=0hJc1S9O4oW54XuY
Retrieve access token
Generate a client authentication assertion and prepare arguments for POST to token API (newlines added for clarity):
client_id=demo_app_whatever&
code=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwiY29kZV9jaGFsbGVuZ2VfbWV0aG9kIjoiUzI1NiIsImNvZGVfY2hhbGxlbmdlIjoiWVBYZTdCOGdoS3JqOFBzVDRMNmx0dXBnSTEyTlFKNXZibEIwN0Y0ckdhdyIsInNjb3BlIjoibGF1bmNoL3BhdGllbnQgcGF0aWVudC9PYnNlcnZhdGlvbi5ycyBwYXRpZW50L1BhdGllbnQucnMiLCJyZWRpcmVjdF91cmkiOiJodHRwczovL3NoYXJwLWxha2Utd29yZC5nbGl0Y2gubWUvZ3JhcGguaHRtbCIsImlhdCI6MTYzMzUzMjAxNCwiZXhwIjoxNjMzNTMyMzE0fQ.xilM68Bavtr9IpklYG-j96gTxAda9r4Z_boe2zv3A3E&
grant_type=authorization_code&
redirect_uri=https%3A%2F%2Fsharp-lake-word.glitch.me%2Fgraph.html&
code_verifier=o28xyrYY7-lGYfnKwRjHEZWlFIPlzVnFPYMWbH-g_BsNnQNem-IAg9fDh92X0KtvHCPO5_C-RJd2QhApKQ-2cRp-S_W3qmTidTEPkeWyniKQSF9Q_k10Q5wMc8fGzoyF
Issue POST to the token endpoint:
curl 'https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/token' \
 -H 'accept: application/json' \
 -H 'content-type: application/x-www-form-urlencoded' \
 --data-raw 'client_id=demo_app_whatever&code=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwiY29kZV9jaGFsbGVuZ2VfbWV0aG9kIjoiUzI1NiIsImNvZGVfY2hhbGxlbmdlIjoiWVBYZTdCOGdoS3JqOFBzVDRMNmx0dXBnSTEyTlFKNXZibEIwN0Y0ckdhdyIsInNjb3BlIjoibGF1bmNoL3BhdGllbnQgcGF0aWVudC9PYnNlcnZhdGlvbi5ycyBwYXRpZW50L1BhdGllbnQucnMiLCJyZWRpcmVjdF91cmkiOiJodHRwczovL3NoYXJwLWxha2Utd29yZC5nbGl0Y2gubWUvZ3JhcGguaHRtbCIsImlhdCI6MTYzMzUzMjAxNCwiZXhwIjoxNjMzNTMyMzE0fQ.xilM68Bavtr9IpklYG-j96gTxAda9r4Z_boe2zv3A3E&grant_type=authorization_code&redirect_uri=https%3A%2F%2Fsharp-lake-word.glitch.me%2Fgraph.html&code_verifier=o28xyrYY7-lGYfnKwRjHEZWlFIPlzVnFPYMWbH-g_BsNnQNem-IAg9fDh92X0KtvHCPO5_C-RJd2QhApKQ-2cRp-S_W3qmTidTEPkeWyniKQSF9Q_k10Q5wMc8fGzoyF'

{
 "need_patient_banner": true,
 "smart_style_url": "https://smart.argo.run/smart-style.json",
 "patient": "87a339d0-8cae-418e-89c7-8651e6aab3c6",
 "token_type": "Bearer",
 "scope": "launch/patient patient/Observation.rs patient/Patient.rs",
 "expires_in": 3600,
 "access_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuZWVkX3BhdGllbnRfYmFubmVyIjp0cnVlLCJzbWFydF9zdHlsZV91cmwiOiJodHRwczovL3NtYXJ0LmFyZ28ucnVuLy9zbWFydC1zdHlsZS5qc29uIiwicGF0aWVudCI6Ijg3YTMzOWQwLThjYWUtNDE4ZS04OWM3LTg2NTFlNmFhYjNjNiIsInRva2VuX3R5cGUiOiJiZWFyZXIiLCJzY29wZSI6ImxhdW5jaC9wYXRpZW50IHBhdGllbnQvT2JzZXJ2YXRpb24ucnMgcGF0aWVudC9QYXRpZW50LnJzIiwiY2xpZW50X2lkIjoiZGVtb19hcHBfd2hhdGV2ZXIiLCJleHBpcmVzX2luIjozNjAwLCJpYXQiOjE2MzM1MzIwMTQsImV4cCI6MTYzMzUzNTYxNH0.PzNw23IZGtBfgpBtbIczthV2hGwanG_eyvthVS8mrG4",
 "refresh_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwic2NvcGUiOiJsYXVuY2gvcGF0aWVudCBwYXRpZW50L09ic2VydmF0aW9uLnJzIHBhdGllbnQvUGF0aWVudC5ycyBvZmZsaW5lX2FjY2VzcyIsImlhdCI6MTYzMzUzMzg1OSwiZXhwIjoxNjY1MDY5ODU5fQ.Q41QwZCEQlZ16M7YwvYuVbUP03mRFJoqRxL8SS8_ImM"
}
Access FHIR API
curl 'https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/fhir/Observation?code=4548-4&_sort%3Adesc=date&_count=10&patient=87a339d0-8cae-418e-89c7-8651e6aab3c6' \
 -H 'accept: application/json' \
 -H 'authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuZWVkX3BhdGllbnRfYmFubmVyIjp0cnVlLCJzbWFydF9zdHlsZV91cmwiOiJodHRwczovL3NtYXJ0LmFyZ28ucnVuLy9zbWFydC1zdHlsZS5qc29uIiwicGF0aWVudCI6Ijg3YTMzOWQwLThjYWUtNDE4ZS04OWM3LTg2NTFlNmFhYjNjNiIsInRva2VuX3R5cGUiOiJiZWFyZXIiLCJzY29wZSI6ImxhdW5jaC9wYXRpZW50IHBhdGllbnQvT2JzZXJ2YXRpb24ucnMgcGF0aWVudC9QYXRpZW50LnJzIiwiY2xpZW50X2lkIjoiZGVtb19hcHBfd2hhdGV2ZXIiLCJleHBpcmVzX2luIjozNjAwLCJpYXQiOjE2MzM1MzIwMTQsImV4cCI6MTYzMzUzNTYxNH0.PzNw23IZGtBfgpBtbIczthV2hGwanG_eyvthVS8mrG4'

{
 "resourceType": "Bundle",
 "id": "9e3ed23b-b62e-4a3d-9ac8-9b66a67f700d",
 "meta": {
 "lastUpdated": "2021-10-06T10:52:52.847-04:00"
 },
 "type": "searchset",
 "total": 11,
 "link": [
 {
 "relation": "self",
 "url": "https://smart.argo.run/v/r4/fhir/Observation?_count=10&_sort%3Adesc=date&code=4548-4&patient=87a339d0-8cae-418e-89c7-8651e6aab3c6"
 },
 {
 "relation": "next",
 "url": "https://smart.argo.run/v/r4/fhir?_getpages=9e3ed23b-b62e-4a3d-9ac8-9b66a67f700d&_getpagesoffset=10&_count=10&_pretty=true&_bundletype=searchset"
 }
],
 "entry": [
 {
<SNIPPED for brevity>
Refresh access token
Generate a client authentication assertion and prepare arguments for POST to token API (newlines added for clarity)
client_id=demo_app_whatever&
grant_type=refresh_token&
refresh_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwic2NvcGUiOiJsYXVuY2gvcGF0aWVudCBwYXRpZW50L09ic2VydmF0aW9uLnJzIHBhdGllbnQvUGF0aWVudC5ycyBvZmZsaW5lX2FjY2VzcyIsImlhdCI6MTYzMzUzMzg1OSwiZXhwIjoxNjY1MDY5ODU5fQ.Q41QwZCEQlZ16M7YwvYuVbUP03mRFJoqRxL8SS8_ImM&
curl 'https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/auth/token' \
 -H 'accept: application/json' \
 -H 'content-type: application/x-www-form-urlencoded' \
 --data-raw 'client_id=demo_app_whatever&code=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwiY29kZV9jaGFsbGVuZ2VfbWV0aG9kIjoiUzI1NiIsImNvZGVfY2hhbGxlbmdlIjoieFFzdkN5c2FMbEZvVkU5ZV92MTFiWmNwUlR6RW5wVnIzY2c2VTJYeFpFbyIsInNjb3BlIjoibGF1bmNoL3BhdGllbnQgcGF0aWVudC9PYnNlcnZhdGlvbi5ycyBwYXRpZW50L1BhdGllbnQucnMiLCJyZWRpcmVjdF91cmkiOiJodHRwczovL3NoYXJwLWxha2Utd29yZC5nbGl0Y2gubWUvZ3JhcGguaHRtbCIsImlhdCI6MTYzMzUzMzY1NCwiZXhwIjoxNjMzNTMzOTU0fQ.ovs8WkW7ViCvoiTGJXxWb21OtiJfUmwgXwkt3a1gNRc&grant_type=authorization_code'

{
 "need_patient_banner": true,
 "smart_style_url": "https://smart.argo.run/smart-style.json",
 "patient": "87a339d0-8cae-418e-89c7-8651e6aab3c6",
 "token_type": "Bearer",
 "scope": "launch/patient patient/Observation.rs patient/Patient.rs offline_access",
 "expires_in": 3600,
 "access_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuZWVkX3BhdGllbnRfYmFubmVyIjp0cnVlLCJzbWFydF9zdHlsZV91cmwiOiJodHRwczovL3NtYXJ0LmFyZ28ucnVuLy9zbWFydC1zdHlsZS5qc29uIiwicGF0aWVudCI6Ijg3YTMzOWQwLThjYWUtNDE4ZS04OWM3LTg2NTFlNmFhYjNjNiIsInJlZnJlc2hfdG9rZW4iOiJleUpoYkdjaU9pSklVekkxTmlJc0luUjVjQ0k2SWtwWFZDSjkuZXlKamIyNTBaWGgwSWpwN0ltNWxaV1JmY0dGMGFXVnVkRjlpWVc1dVpYSWlPblJ5ZFdVc0luTnRZWEowWDNOMGVXeGxYM1Z5YkNJNkltaDBkSEJ6T2k4dmMyMWhjblF1WVhKbmJ5NXlkVzR2TDNOdFlYSjBMWE4wZVd4bExtcHpiMjRpTENKd1lYUnBaVzUwSWpvaU9EZGhNek01WkRBdE9HTmhaUzAwTVRobExUZzVZemN0T0RZMU1XVTJZV0ZpTTJNMkluMHNJbU5zYVdWdWRGOXBaQ0k2SW1SbGJXOWZZWEJ3WDNkb1lYUmxkbVZ5SWl3aWMyTnZjR1VpT2lKc1lYVnVZMmd2Y0dGMGFXVnVkQ0J3WVhScFpXNTBMMDlpYzJWeWRtRjBhVzl1TG5KeklIQmhkR2xsYm5RdlVHRjBhV1Z1ZEM1eWN5QnZabVpzYVc1bFgyRmpZMlZ6Y3lJc0ltbGhkQ0k2TVRZek16VXpNemcxT1N3aVpYaHdJam94TmpZMU1EWTVPRFU1ZlEuUTQxUXdaQ0VRbFoxNk03WXd2WXVWYlVQMDNtUkZKb3FSeEw4U1M4X0ltTSIsInRva2VuX3R5cGUiOiJiZWFyZXIiLCJzY29wZSI6ImxhdW5jaC9wYXRpZW50IHBhdGllbnQvT2JzZXJ2YXRpb24ucnMgcGF0aWVudC9QYXRpZW50LnJzIG9mZmxpbmVfYWNjZXNzIiwiY2xpZW50X2lkIjoiZGVtb19hcHBfd2hhdGV2ZXIiLCJleHBpcmVzX2luIjozNjAwLCJpYXQiOjE2MzM1MzM4NTksImV4cCI6MTYzMzUzNzQ1OX0.-4vtO6iADkH7HM6-IqoSchEMv2mVsztjHg-5RBkPXrc",
 "refresh_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb250ZXh0Ijp7Im5lZWRfcGF0aWVudF9iYW5uZXIiOnRydWUsInNtYXJ0X3N0eWxlX3VybCI6Imh0dHBzOi8vc21hcnQuYXJnby5ydW4vL3NtYXJ0LXN0eWxlLmpzb24iLCJwYXRpZW50IjoiODdhMzM5ZDAtOGNhZS00MThlLTg5YzctODY1MWU2YWFiM2M2In0sImNsaWVudF9pZCI6ImRlbW9fYXBwX3doYXRldmVyIiwic2NvcGUiOiJsYXVuY2gvcGF0aWVudCBwYXRpZW50L09ic2VydmF0aW9uLnJzIHBhdGllbnQvUGF0aWVudC5ycyBvZmZsaW5lX2FjY2VzcyIsImlhdCI6MTYzMzUzMzg1OSwiZXhwIjoxNjY1MDY5ODU5fQ.Q41QwZCEQlZ16M7YwvYuVbUP03mRFJoqRxL8SS8_ImM"
}

2.2 Example App Launch for Asymmetric Client Auth	Comment by Heuvel, Bas van den: Empty example,
Should this be part of section 10?
2.3 Example: App Launch with Asymmetric Authentication
Launch App
This is a user-driven stepmstep triggering the subsequent workflow.
In this example, the launch is initiated aginstagainst a FHIR server with a base URL of:
https://smart.argo.run/v/r4/sim/eyJtIjoiMSIsImsiOiIxIiwiaSI6IjEiLCJqIjoiMSIsImIiOiI4N2EzMzlkMC04Y2FlLTQxOGUtODljNy04NjUxZTZhYWIzYzYifQ/fhir
… and the app’s redirect URL has been registered as:
https://sharp-lake-word.glitch.me/graph.html
… and the app’s public key has been registered as:
{
 "kty": "EC",
 "crv": "P-384",
 "x": "wcE8O55ro6aOuTf5Ty1k_IG4mTcuLiVercHouge1G5Ri-leevhev4uJzlHpi3U8r",
 "y": "mLRgz8Giu6XA_AqG8bywqbygShmd8jowflrdx0KQtM5X4s4aqDeCRfcpexykp3aI",
 "kid": "afb27c284f2d93959c18fa0320e32060",
 "alg": "ES384",
}
(For reproducibility: the corresponding private key parameter "d" is "WcrTiYk8jbI-Sd1sKNpqGmELWGG08bf_y9SSlnC4cpAl5GRdHHN9gKYlPvMFqiJ5". This would not be shared in a real-world registration scenario.)
… and the app has been assigned a client_id of:
demo_app_whatever

3 Backend Services
· Profile Audience and Scope
· Underlying Standards
· Conformance Language
· Top-level steps for Backend Services Authorization
· Register SMART Backend Service (communicating public keys)
· Retrieve .well-known/smart-configuration
· Obtain acess token
· Access FHIR API
Profile Audience and Scope
This profile is intended to be used by developers of backend services (clients) that autonomously (or semi-autonomously) need to access resources from FHIR servers that have pre-authorized defined scopes of access. This specification handles use cases complementary to the SMART App Launch protocol. Specifically, this profile describes the runtime process by which the client acquires an access token that can be used to retrieve FHIR resources. This specification is designed to work with FHIR Bulk Data Access, but is not restricted to use for retrieving bulk data; it may be used to connect to any FHIR API endpoint, including both synchronous and asynchronous access.
Use this profile when the following conditions apply:	Comment by Heuvel, Bas van den: Why bold?
· The target FHIR authorization server can register the client and pre-authorize access to a defined set of FHIR resources.
· The client may run autonomously, or with user interaction that does not include access authorization.
· The client supports client-confidential-asymmetric authentication
· No compelling need exists for a user to authorize the access at runtime.
Note See Also: The FHIR specification includes a set of security considerations including security, privacy, and access control. These considerations apply to diverse use cases and provide general guidance for choosing among security specifications for particular use cases.
Examples
· An analytics platform or data warehouse that periodically performs a bulk data import from an electronic health record system for analysis of a population of patients.
· A lab monitoring service that determines which patients are currently admitted to the hospital, reviews incoming laboratory results, and generates clinical alerts when specific trigger conditions are met. Note that in this example, the monitoring service may be a backend client to multiple servers.
· A data integration service that periodically queries the EHR for newly registered patients and synchronizes these with an external database
· A utilization tracking system that queries an EHR every minute for bed and room usage and displays statistics on a wall monitor.
· Public health surveillance studies that do not require real-time exchange of data.
Underlying Standards
· HL7 FHIR RESTful API
· RFC5246, The Transport Layer Security Protocol, V1.2
· RFC6749, The OAuth 2.0 Authorization Framework
· RFC7515, JSON Web Signature
· RFC7517, JSON Web Key
· RFC7518, JSON Web Algorithms
· RFC7519, JSON Web Token (JWT)
· RFC7521, Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants
· RFC7523, JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
· RFC7591, OAuth 2.0 Dynamic Client Registration Protocol
Conformance Language	Comment by Heuvel, Bas van den: I would move this to chapter 1
This specification uses the conformance verbs SHALL, SHOULD, and MAY as defined in RFC2119. Unlike RFC 2119, however, this specification allows that different applications may not be able to interoperate because of how they use optional features. In particular:
1. SHALL: an absolute requirement for all implementations
2. SHALL NOT: an absolute prohibition against inclusion for all implementations
3. SHOULD/SHOULD NOT: A best practice or recommendation to be considered by implementers within the context of their particular implementation; there may be valid reasons to ignore an item, but the full implications must be understood and carefully weighed before choosing a different course
4. MAY: This is truly optional language for an implementation; can be included or omitted as the implementer decides with no implications
Top-level steps for Backend Services Authorization
Backend ServiceBackend ServiceFHIR authorization serverFHIR authorization serverFHIR resource serverFHIR resource serveropt[Precondition: Client Registration](may be out of band)Discovery requestDiscovery responseAccess token requestalt[Granted]Access token responseRequest Resources[Denied]Authorization error

1. Register Backend Service (one-time step, can be out-of-band)
2. Retrieve .well-known/smart-configuration
3. Obtain access token
4. Access FHIR API
Register SMART Backend Service (communicating public keys)
Before a SMART client can run against a FHIR server, the client SHALL register with the server by following the registration steps described in client-confidential-asymmetric authentication.
Retrieve .well-known/smart-configuration	Comment by Heuvel, Bas van den: Although it overlaps with the EHR and Standalone steps, the structure of the document justifies its duplication.
In order to request authorization to access FHIR resources, the app discovers the EHR FHIR server’s SMART configuration metadata, including OAuth token endpoint URL.
Request
The app issues an HTTP GET with an Accept header supporting application/json to retrieve the SMART configuration file.	Comment by Heuvel, Bas van den: What URL?
Response
Servers respond with a discovery response that meets discovery requirements described in client-confidential-asymmetric authentication.
Example Request and Response
For a full example, see example request and response.
Obtain acess token
By the time a client has been registered with the FHIR authorization server, the key elements of organizational trust will have been established. That is, the client will be considered “pre-authorized” to access FHIR resources. Then, at runtime, the client will need to obtain an access token in order to retrieve FHIR resources as pre-authorized. Such access tokens are issued by the FHIR authorization server, in accordance with the OAuth 2.0 Authorization Framework, RFC6749.
Because the authorization scope is limited to protected resources previously arranged with the FHIR authorization server, the client credentials grant flow, as defined in Section 4.4 of RFC6749, may be used to request authorization. Use of the client credentials grant type requires that the client SHALL be a “confidential” client capable of protecting its authentication credential.
This specification describes requirements for requesting an access token through the use of an OAuth 2.0 client credentials flow, with a JWT assertion as the client’s authentication mechanism. The exchange, as depicted below, allows the client to authenticate itself to the FHIR authorization server and to request a short-lived access token in a single exchange.
Request
To begin the exchange, the client SHALL use the Transport Layer Security (TLS) Protocol Version 1.2 (RFC5246) or a more recent version of TLS to authenticate the identity of the FHIR authorization server and to establish an encrypted, integrity-protected link for securing all exchanges between the client and the FHIR authorization server’s token endpoint. All exchanges described herein between the client and the FHIR server SHALL be secured using TLS V1.2 or a more recent version of TLS .
Before a client can request an access token, it generates a one-time-use authentication JWT as described in client-confidential-symmetric authentication. After generating this authentication JWT, the client requests an access token via HTTP POST to the FHIR authorization server’s token endpoint URL, using content-type application/x-www-form-urlencoded with the following parameters:
	Parameters

	scope
	required
	The scope of access requested. See note about scopes below

	grant_type
	required
	Fixed value: client_credentials

	client_assertion_type
	required
	Fixed value: urn:ietf:params:oauth:client-assertion-type:jwt-bearer

	client_assertion
	required
	Signed authentication JWT value (see above)

Scopes
The client is pre-authorized by the server: at registration time or out of band, it is given the authority to access certain data. The client then includes a set of scopes in the access token request, which causes the server to apply additional access restrictions following the SMART Scopes syntax. For Backend Services, requested scopes will be system/ scopes (for example system/Observation.rs, which requests an access token capable of reading all Observations that the client has been pre-authorized to access).
Response
Enforce Authorization	Comment by Heuvel, Bas van den: Align with scope section
There are several cases where a client might ask for data that the server cannot or will not return:	Comment by Heuvel, Bas van den: This should be part of the EHR/standalone response es well.
· Client explicitly asks for data that it is not authorized to see (e.g. a client asks for Observation resources but has scopes that only permit access to Patient resources). In this case a server SHOULD respond with a failure to the initial request.
· Client explicitly asks for data that the server does not support (e.g., a client asks for Practitioner resources but the server does not support FHIR access to Practitioner data). In this case a server SHOULD respond with a failure to the initial request.
· Client explicitly asks for data that the server supports and that appears consistent with its access scopes – but some additional out-of-band rules/policies/restrictions prevents the client from being authorized to see these data. In this case, the server MAY withhold certain results from the response, and MAY indicate to the client that results were withheld by including OperationOutcome information in the “error” array for the response as a partial success.	Comment by Heuvel, Bas van den: This is related to the FHIR Access step and not authorizaztion.
Rules regarding circumstances under which a client is required to obtain and present an access token along with a request are based on risk-management decisions that each FHIR resource service needs to make, considering the workflows involved, perceived risks, and the organization’s risk-management policies. Refresh tokens SHOULD NOT be issued.
Validate Authentication JWS
The FHIR authorization server validates a client’s authentication JWT according to the client-confidential-asymmetric authentication profile. See JWT validation rules.
Evaluate Requested Access
Once the client has been authenticated, the FHIR authorization server SHALL mediate the request to assure that the scope requested is within the scope pre-authorized to the client.
Issue Access Token
If an error is encountered during the authorization process, the FHIR authorization server SHALL respond with the appropriate error message defined in Section 5.2 of the OAuth 2.0 specification. The FHIR authorization server SHOULD include an error_uri or error_description as defined in OAuth 2.0.
If the access token request is valid and authorized, the FHIR authorization server SHALL issue an access token in response. The access token response SHALL be a JSON object with the following properties:
	Access token response: property names

	access_token
	required
	The access token issued by the FHIR authorization server.

	token_type
	required
	Fixed value: bearer.

	expires_in
	required
	The lifetime in seconds of the access token. The recommended value is 300, for a five-minute token lifetime.

	scope
	required
	Scope of access authorized. Note that this can be different from the scopes requested by the app.

To minimize risks associated with token redirection, the scope of each access token SHOULD encompass, and be limited to, the resources requested. Access tokens issued under this profile SHALL be short-lived; the expires_in value SHOULD NOT exceed 300, which represents an expiration-time of five minutes.
Example Token Request and Response
For a full example, see example token request and response.
Access FHIR API
With a valid access token, the app can access protected FHIR data by issuing a FHIR API call to the FHIR endpoint on the FHIR resource server.
Request
From the access token resopnse, an app has received an OAuth2 bearer-type access token (access_token property) that can be used to fetch clinical data. The app issues a request that includes an Authorization header that presents the access_token as a “Bearer” token:
Authorization: Bearer {{access_token}}
(Note that in a real request, {{access_token}} is replaced with the actual token value.)
Response
The resource server SHALL validate the access token and ensure that it has not expired and that its scope covers the requested resource. The method used by the EHR to validate the access token is beyond the scope of this specification but generally involves an interaction or coordination between the EHR’s resource server and the authorization server.
On occasion, an Backend Service may receive a FHIR resource that contains a “reference” to a resource hosted on a different resource server. The Backend Service SHOULD NOT blindly follow such references and send along its access_token, as the token may be subject to potential theft. The Backend Service SHOULD either ignore the reference, or initiate a new request for access to that resource.
Example Request and Response
For a full example, see example FHIR API request and response.
4 Scopes and Launch Context
· Quick Start
· Scopes for requesting clinical data
· Scopes for requesting context data
· Scopes for requesting identity data
· Scopes for requesting a refresh token
· Extensions
· Steps for using an ID token
· Worked examples
· Appendix: URI representation of scopes
SMART on FHIR’s authorization scheme uses OAuth scopes to communicate (and negotiate) access requirements. Providing apps with access to broad data sets is consistent with current common practices (e.g. interface engines also provide access to broad data sets); access is also limited based on the privileges of the user in context. In general, we use scopes for three kinds of data:
1. Clinical data
2. Contextual data
3. Identity data
Launch context is a negotiation where a client asks for specific launch context parameters (e.g. launch/patient). A server can decide which launch context parameters to provide, using the client’s request as an input into the decision process. When granting a patient-level scopes like patient/*.rs, the server SHALL provide a “patient” launch context parameter.	Comment by Heuvel, Bas van den: Duplication with content in section 4.0.3.1. Please align and try to define in one spot only.	Comment by Heuvel, Bas van den: Why is this needed? This section seams to suggest to provide the known context always. This might also be a privacy concern. I suggest removing this. Unless we want to open the implicit scope discussion again.
Quick Start
Here is a quick overview of the most commonly used scopes. Read on below for complete details.
	Scope
	Grants	Comment by Heuvel, Bas van den: It is more than permission, it is also asking for the information (relates to comment above).

	patient/*.rs
	Permission to read and search any resource for the current patient (see notes on wildcard scopes below).

	user/*.cruds
	Permission to read and write all resources that the current user can access (see notes on wildcard scopes below).

	openid fhirUser
	Permission Request to retrieve information about the current logged-in user, when permitted.

	launch
	Permission Request to obtain launch context when app is launched from an EHR when permitted.

	launch/patient
	When launching outside the EHR, ask for a patient to be selected at launch time.

	offline_access
	Request permission for and reception of a refresh_token that can be used to obtain a new access token to replace an expired one, even after the end-user no longer is online after the access token expires.

	online_access
	Request permission for and reception of Request a refresh_token that can be used to obtain a new access token to replace an expired one, and that will be usable for as long as the end-user remains online.

SMART’s scopes are used to delegate access
SMART’s scopes allow a client to request the delegation of a specific set of access rights; such rights are always limited by underlying system policies and permissions.
For example:
· If a client uses SMART App Launch to request user/*.cruds and is granted these scopes by a user, these scopes convey “full access” relative to the user’s underlying permissions. If the underlying user has limited permissions, the client will face these same limitations.	Comment by Heuvel, Bas van den: Overlaps with similar text in the backend spec. Suggest to keep it here and remove it from backend services.
· If a client uses SMART Backend Services to request system/*.cruds, these scopes convey “full access” relative to a pre-configured client policy. If the pre-configured policy imposes limited permissions, the client will face these same limitations.
Neither SMART on FHIR nor the FHIR Core specification provide a way to model the “underlying” permissions at play here; this is a lower-level responsibility in the access control stack. As such, clients can attempt to perform FHIR operations based on the scopes they are granted — but depending on the details of the underlying permission system (e.g., the permissions of the approving user and/or permissions assigned in a client-specific policy) these requests may be rejected, or results may be omitted from responses.
For instance, a client may receive:
· 200 OK response to a search interaction that appears to be allowed by the granted scopes, but where results have been omitted from the response Bundle.
· 403 Forbidden response to a write interaction that appears to be allowed by the granted scopes.
Applications reading may receive results that have been filtered or redacted based on the underlying permissions of the delegating authority, or may be refused access (see guidance at https://hl7.org/fhir/security.html#AccessDenied).
Scopes for requesting clinical data
SMART on FHIR defines OAuth2 access scopes that correspond directly to FHIR resource types. These scopes impact the access an application may have to FHIR resources (and actions). We define permissions to support the following FHIR REST API interactions:
· c for create
· Type level create
· r for read
· Instance level read
· Instance level vread
· Instance level history
· u for update
· Instance level update Note that some servers allow for an update operation to create a new instance, and this is allowed by the update scope
· Instance level patch
· d for delete
· Instance level delete
· s for search
· Type level search
· Type level history
· System level search
· System level history
Valid suffixes are a subset of the in-order string .cruds. For example, to convey support for creating and updating observations, use scope patient/Observation.cu. To convey support for reading and searching observations, use scope patient/Observation.rs. For backwards compatibility with scopes defined in the SMART App Launch 1.0 specification, servers SHOULD advertise the permission-v1 capability in their .well-known/smart-configuration discovery document, SHOULD return v1 scopes when v1 scopes are requested and granted, and SHOULD process v1 scopes with the following semantics in v2:
· v1 .read ⇒ v2 .rs
· v1 .write ⇒ v2 .cud
· v1 .* ⇒ v2 .cruds
Scope requests with undefined or out of order interactions MAY be ignored, replaced with server default scopes, or rejected. For example, a request of .dus is not a defined scope request. This policy is to prevent misinterpretation of scopes with other conventions (e.g., interpreting .read as .rd and granting extraneous delete permissions).
Batches and Transactions
SMART 2.0 does not define specific scopes for batch or transaction interactions. These system-level interactions are simply convienceconvenience wrappers for other interactions. As such, batch and transaction requests should be validated based on the actual requests within them.
Scope Equivalence
Multiple scopes compounded or expanded are equivalent to each other. E.g., Observation.rs is interchangeable with Observation.r Observation.s. In order to reduce token size, it is recomendedrecommended that scopes be factored to their shortest form.
Finer-grained resource constraints using search parameters
In SMART 1.0, scopes were based entirely on FHIR Resource types, as in patient/Observation.read (for Observations) or patient.Immunization.read (for Immunizations). In SMART 2.0, we provide more detailed constraints based on FHIR REST API search parameter syntax. To apply these constraints, add a query string suffix to existing scopes, starting with ? and followed by a series of param=value items separated by &. For example, to request read and search access to laboratory observations but not other observations, the scope patient/Observation.rs?category=http://terminology.hl7.org/CodeSystem/observation-category|laboratory.
Requirements for support
We’re seeking community consensus on a small common core of search parameters for broad support; we reserve the right to make some search parameters mandatory in the future.
Experimental features
Because the search parameter based syntax here is quite general, it opens up the possibility of using many features that servers may have trouble supporting in a consistent and performant fashion. Given the current level of implementation experience, the following features should be considered experimental, even if they are supported by a server:	Comment by Heuvel, Bas van den: We should add something that differentiates this between the scopes published by the server and the one requested. Those published can be used and will allow access to the corresponding search data. When requested, the server can ignore or adapt as is wishes for. 0
· Use of search modifiers such as Observation.rs?code:in=http://valueset.example.org/ValueSet/diabetes-codes
· Use of search parameter chaining such as Observation.rs?patient.birthdate=1990
· Use of FHIR’s _filter capabilities	Comment by Heuvel, Bas van den: Add reference https://www.hl7.org/fhir/search_filter.html
Scope size over the wire
Scope strings appear over the wire at several points in an OAuth flow. Implementers should be aware that fine-grained controls can lead to a proliferation of scopes, increasing in the length of the scope string for app authorizations. As such, implementers should take care to avoid putting arbitrarily large scope strings in places where they might not “fit”. The following considerations apply, presented in the sequential order of a SMART App Launch:
· When initiating an authorization request, app developers should prefer POST-based authorization requests to GET-based requests, since this avoids URL length limits that might apply to GET-based authorization requests. (For example, sommesome current-generation browsers have a 32kB length limit for values displayed in the URL bar.)
· In the authorization code redirect response, no scopes are included, so these considerations do not apply.
· In the access token response, no specific limits apply, sinceapply since this payload comes in response to a client-initiated POST.
· In the token introspection response, no specific limits apply, sinceapply since this payload comes in response to a client-initiated POST.
· In the access token itself, implementation-specific considerations may apply. SMART leaves access token formats out of scope, so formally there are no restrictions. But since access tokens are included in HTTP headers, servers should take care to ensure they do not get too large. For example, some current-generation HTTP servers have an 8kB limit on header length. To remain under this limit, authorization servers that use structured token formats like JWT might consider embedding handles or pointers to scopes, rather than embedding literal scopes in an access token. Alternatively, authorization servers might establish an internal convention mapping shorter scope names into longer scopes (or common combinations of longer scopes).
Clinical Scope Syntax
Expressed as a railroad diagram, the scope language is:
patientusersystem/FHIR Resource Type*.cruds?param=value&
Patient-specific scopes
Patient-specific scopes allow access to specific data about a single patient. Which patient is not specified here: clinical data scopes are all about what and not who which is handled in the next section. Patient-specific scopes start with patient/. Note that some EHRs may not enable access to all related resources - for example, Practitioners linked to/from Patient-specific resources. Note that if a FHIR server supports replacing linking one Patient record with another via Patient.link, the server documentation SHALL describe its authorization behavior.
Let’s look at a few examples:
	Goal
	Scope
	Notes

	Read and search for all observations about a patient
	patient/Observation.rs
	

	Read demographics about a patient
	patient/Patient.r
	Note the difference in capitalization between “patient” the permission type and “Patient” the resource.

	Add new blood pressure readings for a patient
	patient/Observation.c
	Note that the permission is broader than our goal: with this scope, an app can add not only blood pressures, but other observations as well. Note also that write access does not imply read access.

	Read all available data about a patient
	patient/*.cruds
	See notes on wildcard scopes below.

User-level scopes
User-level scopes allow access to specific data that a user can access. Note that this isn’t just data about the user; it’s data available to that user. User-level scopes start with user/.
Let’s look at a few examples:
	Goal
	Scope
	Notes

	Read a feed of all new lab observations across a patient population
	user/Observation.rs
	

	Manage all appointments to which the authorizing user has access
	user/Appointment.cruds
	Individual attributes such as d for delete could be removed if not required.

	Manage all resources on behalf of the authorizing user
	user/*.cruds
	

	Select a patient
	user/Patient.rs
	Allows the client app to select a patient.

System-level scopes
System-level scopes describe data that a client system is directly authorized to access; these scopes are useful in cases where there is no user in the loop, such as a data monitoring or reporting service. System-level scopes start with system/.
Let’s look at a few examples:
	Goal
	Scope
	Notes

	Alert engine to monitor all lab observations in a health system
	system/Observation.rs
	Read-only access to observations.

	Perform bulk data export across all available data within a FHIR server
	system/*.rs
	Full read/search for all resources.

	System-level bridge, turning a V2 ADT feed into FHIR Encounter resources
	system/Encounter.cud
	Write access to Encounters.

Wildcard scopes
As noted previously, clients can request clinical scopes that contain a wildcard (*) for the FHIR resource. When a wildcard is requested for the FHIR resource, the client is asking for all data for all available FHIR resources, both now and in the future. This is an important distinction to understand, especially for the entity responsible for granting authorization requests from clients.
For instance, imagine a FHIR server that today just exposes the Patient resource. The authorization server asking a patient to authorize a SMART app requesting patient/*.cruds should inform the user that they are being asked to grant this SMART app access to not just the currently accessible data about them (patient demographics), but also any additional data the FHIR server may be enhanced to expose in the future (e.g., genetics).
As with any requested scope, the scopes ultimately granted by the authorization server may differ from the scopes requested by the client! When dealing with wildcard clinical scope requests, this is often true.
As a best practice, clients should examine the granted scopes by the authorization server and respond accordingly. Failure to do so may lead to situations in which the client attempts to access FHIR resources they were not granted access only to receievereceive an authorization failure by the FHIR server.
For example, imagine a client with the goal of obtaining read and write access to a patient’s allergies and as such, requests the clinical scope of patient/AllergyIntolerance.cruds. The authorization server may respond in a variety of ways with respect to the scopes that are ultimately granted. The following table outlines several, but not an exhaustive list of scenarios for this example:
	Granted Scope
	Notes

	patient/AllergyIntolerance.cruds
	The client was granted exactly what it requested: patient-level read and write access to allergies via the same requested wildcard scope.

	patient/AllergyIntolerance.rs
patient/AllergyIntolerance.cud
	The client was granted exactly what it requested: patient-level CRUDS access to allergies. However, note that this was communicated via two explicit scopes rather than a single scope.

	patient/AllergyIntolerance.rs
	The client was granted just patient-level read access to allergies.

	patient/AllergyIntolerance.cud
	The client was granted just patient-level write access to allergies.

	patient/*.rs
	The client was granted read access to all data on the patient.

	patient/*.cruds
	The client was granted its requested scopes as well as read/write access to all other data on the patient.

	patient/Observation.rs
	The client was granted an entirely different scope: patient-level read access to the patient’s observations. While this behavior is unlikely for a production quality authorization server, this scenario is technically possible.

	"" (empty scope string – no scopes granted)
	The authorization server chose to not grant any of the requested scopes.

As a best practice, clients are encouraged to request only the scopes and permissions they need to function and avoid the use of wildcard scopes purely for the sake of convenience. For instance, if your allergy management app requires patient-level read and write access to allergies, requesting the patient/AllergyIntolerance.cruds scope is acceptable. However, if your app only requires access to read allergies, requesting a scope of patient/AllergyIntolerance.rs would be more appropriate.
Scopes for requesting context data
These scopes affect what context parameters will be provided in the access token response. Many apps rely on contextual data from the EHR to answer questions like:
· Which patient record is currently “open” in the EHR?
· Which encounter is currently “open” in the EHR?
· At which clinic, hospital ward, or patient room is the end-user currently working?
To request access to such details, an app asks for “launch context” scopes in addition to whatever clinical access scopes it needs. Launch context scopes are easy to tell apart from clinical data scopes, because they always begin with launch.
There are two general approaches to asking for launch context data, depending on the details of how your app is launched.
Apps that launch from the EHR
Apps that launch from the EHR will be passed an explicit URL parameter called launch, whose value must associate the app’s authorization request with the current EHR session. For example, If an app receives the URL parameter launch=abc123, then it requests the scope launch and provides an additional URL parameter of launch=abc123.
The application could choose to also provide launch/patient and/or launch/encounter as “hints” regarding which contexts the app would like the EHR to gather. The EHR MAY ignore these hints (for example, if the user is in a workflow where these contexts do not exist).	Comment by Heuvel, Bas van den: Also others
If an application requests a clinical scope which is restricted to a single patient (e.g. patient/*.rs), and the authorization results in the EHR is granting that scope, the EHR SHALL establish a patient in context. The EHR MAY refuse authorization requests including patient/ that do not also include a valid launch, or it MAY infer the launch/patient scope.
Standalone apps
Standalone apps that launch outside the EHR do not have any EHR context at the outset. These apps must explicitly request EHR context. The EHR SHOULD provide the requested context if requested by the following scopes, unless otherwise noted.:
Requesting context with scopes
	Requested Scope
	Meaning

	launch/patient
	Need patient context at launch time (FHIR Patient resource). See note below.

	launch/encounter
	Need encounter context at launch time (FHIR Encounter resource).

	(Others)
	This list can be extended by any SMART EHR if additional context is required. When specifying resource types, convert the type names to all lowercase (e.g. launch/diagnosticreport).

Note on launch/patient: If an application requests a clinical scope which is restricted to a single patient (e.g. patient/*.rs), and the authorization results in the EHR granting that scope, the EHR SHALL establish a patient in context. The EHR MAY refuse authorization requests including patient/ that do not also include a valid launch/patient scope, or it MAY infer the launch/patient scope.	Comment by Heuvel, Bas van den: This is said at least two or three times in the spec. We may want to condense that.
Launch context arrives with your access_token
Once an app is authorized, the token response will include any context data the app requested – along with (potentially!) any unsolicited context data the EHR decides to communicate. For example, EHRs may use launch context to communicate UX and UI expectations to the app (see need_patient_banner below).
Launch context parameters come alongside the access token. They will appear as JSON parameters:
{
 "access_token": "secret-xyz",
 "patient": "123",
 "fhirContext": ["DiagnosticReport/123", "Organization/789"],
//...
}
Here are the launch context parameters to expect:
	Launch context parameter
	Example value
	Meaning

	patient
	"123"
	String value with a patient id, indicating that the app was launched in the context of FHIR Patient 123. If the app has any patient-level scopes, they will be scoped to Patient 123.

	encounter
	"123"
	String value with an encounter id, indicating that the app was launched in the context of FHIR Encounter 123.

	fhirContext
	["Appointment/123"]
	Array of relative resource References to any resource type other than “Patient” or “Encounter”. It is not prohibited to have more than one Reference to a given type of resource.

	need_patient_banner
	true or false (boolean)
	Boolean value indicating whether the app was launched in a UX context where a patient banner is required (when true) or not required (when false). An app receiving a value of false should not take up screen real estate displaying a patient banner.

	intent
	"reconcile-medications"
	String value describing the intent of the application launch (see notes below)

	smart_style_url
	"https://ehr/styles/smart_v1.json"
	String URL where the EHR’s style parameters can be retrieved (for apps that support styling)

	tenant
	"2ddd6c3a-8e9a-44c6-a305-52111ad302a2"
	String conveying an opaque identifier for the healthcare organization that is launching the app. This parameter is intended primarily to support EHR Launch scenarios.	Comment by Heuvel, Bas van den: An alternative mechanism would be to request the Organization context.

Notes on launch context parametersThe following section provides further details on some of the context parameters
fhirContext
fhirContext: To allow application flexibility, while also maintaining backwards compatibility (and to keep a predictable JSON structure), any contextual resource types (other than Patient and Encounter) that were requested by a launch scope will appear in this parameter. The Patient and Encounter resource types will not be deprecated from top-level parameters, and they will not be permitted within the fhirContext array.	Comment by Heuvel, Bas van den: When using sub sections, this call out is not needed.	Comment by Heuvel, Bas van den: Duplication with text in fhircontext field.	Comment by Heuvel, Bas van den: We discussed this but I still do not like forbidding this. Stating that when present they should be the same is better.
App Launch Intent (optional)
intent: Some SMART apps might offer more than one context or user interface that can be accessed during the SMART launch. The optional intent parameter in the launch context provides a mechanism for the SMART EHR to communicate to the client app which specific context should be displayed as the outcome of the launch. This allows for closer integration between the EHR and client, so that different launch points in the EHR UI can target specific displays within the client app.
For example, a patient timeline app might provide three specific UI contexts, and inform the SMART EHR (out of band, at app configuration time) of the intent values that can be used to launch the app directly into one of the three contexts. The app might respond to intent values like:
· summary-timeline-view - A default UI context, showing a data summary
· recent-history-timeline - A history display, showing a list of entries
· encounter-focused-timeline - A timeline focused on the currently in-context encounter
If a SMART EHR provides a value that the client does not recognize, or does not provide a value, the client app SHOULD display a default application UI context.
Note: SMART makes no effort to standardize intent values. Intents simply provide a mechanism for tighter custom integration between an app and a SMART EHR. The meaning of intents must be negotiated between the app and the EHR.
SMART App Styling (experimental1)	Comment by Heuvel, Bas van den: Change heading style to 5
smart_style_url: In order to mimic the style of the SMART EHR more closely, SMART apps can check for the existence of this launch context parameter and download the JSON file referenced by the URL value, if provided.
The URL should serve a “SMART Style” JSON object with one or more of the following properties:
{
 color_background: "#edeae3",
 color_error: "#9e2d2d",
 color_highlight: "#69b5ce",
 color_modal_backdrop: "",
 color_success: "#498e49",
 color_text: "#303030",
 dim_border_radius: "6px",
 dim_font_size: "13px",
 dim_spacing_size: "20px",
 font_family_body: "Georgia, Times, 'Times New Roman', serif",
 font_family_heading: "'HelveticaNeue-Light', Helvetica, Arial, 'Lucida Grande', sans-serif;"
}
The URL value itself is to be considered a version key for the contents of the SMART Style JSON: EHRs must return a new URL value in the smart_style_url launch context parameter if the contents of this JSON is changed.	Comment by Heuvel, Bas van den: If required use MUST, if recommended use SHOULD. Lower case must is confusing.
	Style Property
	Description

	color_background
	The color used as the background of the app.

	color_error
	The color used when UI elements need to indicate an area or item of concern or dangerous action, such as a button to be used to delete an item, or a display an error message.

	color_highlight
	The color used when UI elements need to indicate an area or item of focus, such as a button used to submit a form, or a loading indicator.

	color_modal_backdrop
	The color used when displaying a backdrop behind a modal dialog or window.

	color_success
	The color used when UI elements need to indicate a positive outcome, such as a notice that an action was completed successfully.

	color_text
	The color used for body text in the app.

	dim_border_radius
	The base corner radius used for UI element borders (0px results in square corners).

	dim_font_size
	The base size of body text displayed in the app.

	dim_spacing_size
	The base dimension used to space UI elements.

	font_family_body
	The list of typefaces to use for body text and elements.

	font_family_heading
	The list of typefaces to use for content heading text and elements.

SMART client apps that can adjust their styles should incorporate the above property values into their stylesheets, but are not required to do so.	Comment by Heuvel, Bas van den: SHOULD?
Optionally, if the client app detects a new version of the SMART Style object (i.e. a new URL is returned the smart_style_url parameter), the client can store the new property values and request approval to use the new values from a client app stakeholder. This allows for safeguarding against poor usability that might occur from the immediate use of these values in the client app UI.	Comment by Heuvel, Bas van den: This also requires storing the old value.
Scopes for requesting identity data
Some apps need to authenticate the end-user. This can be accomplished by requesting the scope openid. When the openid scope is requested, apps can also request the fhirUser scope to obtain a FHIR resource representation of the current user.	Comment by Heuvel, Bas van den: Or just want information on the end-user, e.g. the name.
When these scopes are requested (and the request is granted), the app will receive an id_token that comes alongside the access token.
This token must be validated according to the OIDC specification. To learn more about the user, the app should treat the fhirUser claim as the URL of a FHIR resource representing the current user. This URL MAY be absolute (e.g., https://ehr.example.org/Practitioner/123), or it MAY be relative to the FHIR server base URL associated with the current authorization request (e.g., Practitioner/123). This will be a resource of type Patient, Practitioner, RelatedPerson, or Person. Note that the FHIR server base URL is the same as the URL represented in the aud parameter passed in to the authorization request. Note that Person is only used if the other resource types do not apply to the current user, for example, the “authorized representative” for >1 patients.
The OpenID Connect Core specification describes a wide surface area with many optional capabilities. To be considered compatible with the SMART’s sso-openid-connect capability, the following requirements apply:
· Response types: The EHR SHALL support the Authorization Code Flow, with the request parameters as defined in SMART App Launch. Support is not required for parameters that OIDC lists as optional (e.g. id_token_hint, acr_value), but EHRs are encouraged to review these optional parameters.
· Public Keys Published as Bare JWK Keys: The EHR SHALL publish public keys as bare JWK keys (which MAY also be accompanied by X.509 representations of those keys).
· Claims: The EHR SHALL support the inclusion of SMART’s fhirUser claim within the id_token issued for any requests that grant the openid and fhirUser scopes.	Comment by Heuvel, Bas van den: Support inclusion or include the claim?
· Signed ID Token: The EHR SHALL support Signing ID Tokens with RSA SHA-256.
· A SMART app SHALL NOT pass the auth_time claim or max_age parameter to a server that does not support receiving them.	Comment by Heuvel, Bas van den: How does it know?
Note that support for the following features is optional:	Comment by Heuvel, Bas van den: MAY include?
· claims parameters on the authorization request	Comment by Heuvel, Bas van den: Which request?
· Request Objects on the authorization request	Comment by Heuvel, Bas van den: Which request
· UserInfo endpoint with claims exposed to clients	Comment by Heuvel, Bas van den: what does this mean?
Scopes for requesting a refresh token
To request a refresh_token that can be used to obtain a new access token after the current access token expires, add one of the following scopes:	Comment by Heuvel, Bas van den: Is this needed beyond what is present in the overall table above (Quick start)
	Scope
	Grants

	online_access
	Request a refresh_token that can be used to obtain a new access token to replace an expired one, and that will be usable for as long as the end-user remains online.

	offline_access
	Request a refresh_token that can be used to obtain a new access token to replace an expired token, and that will remain usable for as long as the authorization server and end-user will allow, regardless of whether the end-user is online.

Extensions
Additional context parameters and scopes can be used as extensions using the following namespace conventions:
· use a full URI that you control (e.g. http://example.com/scope-name)
· use any string starting with __ (two underscores)
Example: Extra context - fhirContext for FHIR Resource References	Comment by Heuvel, Bas van den: Is this an example for extensions? If so I do not see how.
EHR Launch	Comment by Heuvel, Bas van den: I’m not sure how to place these examples in relationship with the Extension header. They are examples of the use of context and would be better placed in the fhirContext section above.
Suppose a SMART on FHIR server supports additional launch context during an EHR Launch, perhaps communicating the ID of an ImagingStudy that is open in the EHR at the time of app launch. The server could return an access token response where the fhirContext array includes a value such as ImagingStudy/123.
Standalone Launch
Suppose a SMART on FHIR server supports additional launch context during a Standalone Launch, perhaps providing an ability for the user to select an ImagingStudy during the launch. A client could request this behavior by requesting a launch/imagingstudy scope (note that launch requests scopes are always lower case); then after allowing the user to select an ImagingStudy, the server could return an access token response where the fhirContext array includes a value such as ImagingStudy/123.
Example: Extra context - extensions for non-FHIR context
Suppose a SMART on FHIR server wishes to communicate additional context, such as a custom “dark mode” flag, providing clients a hint about whether they should render a UI suitable for use in low-light environments. The EHR could accomplish this by returning an access token response where an extension property is present. The EHR could choose an extension property as a full URL (e.g., {..., "https://ehr.example.org/props/dark-mode": true}) or by using a "__" prefix (e.g., {..., "__darkMode": true}).
Example: Extra scopes - extensions for non-FHIR APIs
Suppose a SMART on FHIR server supports a custom behavior like allowing users to choose their own profile photos through a custom non-FHIR API. The server can designate a custom scope using a full URL (e.g., https://ehr.example.org/scopes/profilePhoto.manage) or by using a "__" prefix (e.g., __profilePhoto.manage) and associate this scope with the custom behavior. The server could advertise this scope in its developer-facing documentation, and also in the scopes_supported array of its .well-known/smart-configuration file. Clients requesting authorization could include this scope alongside other standardized scopes, so the scope parameter of the authorization request might look like: launch/patient patient/*.rs __profilePhoto.manage. If the user grants these scopes, the access token response would then include a scope value that matches the original request.
Steps for using an ID token	Comment by Heuvel, Bas van den: Shouldn’t this be part of chapter 2?
1. Examine the ID token for its “issuer” property
2. Perform a GET {issuer}/.well-known/openid-configuration
3. Fetch the server’s JSON Web Key by following the “jwks_uri” property
4. Validate the token’s signature against the public key from step #3
5. Extract the fhirUser claim and treat it as the URL of a FHIR resource
Worked examples
· Worked Python example: rendered
Appendix: URI representation of scopes
In some circumstances the scopes must be represented as URIs - . For example, when for example, exchanging what scopes users are allowed to have, or sharing what they did choose), the scopes must be represented as URIs. When URI represented scopes are require, When this is done, the standard URI is to prefix the SMART scopes SHALL be prefixed with http://smarthealthit.org/fhir/scopes/, so that a patient/*.r scope would be http://smarthealthit.org/fhir/scopes/patient/*.read.
For openID scopes have a the URI prefix of http://openid.net/specs/openid-connect-core-1_0# SHALL be used.
5 Asymmetric Authentication
· Profile Audience and Scope
· Underlying Standards
· Conformance Language
· Advertising server support for this profile
· Registering a client (communicting public keys)
· Authenticating to the Token endpoint
· Worked example
Profile Audience and Scope
This profile desribesdescribes SMART’s client-confidential-asymmetric authentication mechanism. It is intended for for SMART clients that can manage and sign assertions with asymmetric keys. Specifically, this profile describes the registration-time metadata required for a client using asymmetric keys, and the runtime process by which a client can authenticate to an OAuth server’s token endpoint. This profile can be implemented by user-facing SMART apps in the context of the SMART App Launch flow or by SMART Backend Services that establish a connection with no user-facing authorization step.	Comment by Heuvel, Bas van den: See earlier comment on IG vs. profile vs chapter.
Use this profile when the following conditions apply:
· The target FHIR authorization server supports SMART’s client-confidential-asymmetric capability
· The client can maangemanage asymmetric keys for authentication
· The client is able to protect a private key
Note See Also: The FHIR specification includes a set of security considerations including security, privacy, and access control. These considerations apply to diverse use cases and provide general guidance for choosing among security specifications for particular use cases.
Underlying Standards
· HL7 FHIR RESTful API
· RFC5246, The Transport Layer Security Protocol, V1.2
· RFC6749, The OAuth 2.0 Authorization Framework
· RFC7515, JSON Web Signature
· RFC7517, JSON Web Key
· RFC7518, JSON Web Algorithms
· RFC7519, JSON Web Token (JWT)
· RFC7521, Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants
· RFC7523, JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
· RFC7591, OAuth 2.0 Dynamic Client Registration Protocol
Conformance Language	Comment by Heuvel, Bas van den: Move to chapter 1?
This specification uses the conformance verbs SHALL, SHOULD, and MAY as defined in RFC2119. Unlike RFC 2119, however, this specification allows that different applications may not be able to interoperate because of how they use optional features. In particular:
1. SHALL: an absolute requirement for all implementations
2. SHALL NOT: an absolute prohibition against inclusion for all implementations
3. SHOULD/SHOULD NOT: A best practice or recommendation to be considered by implementers within the context of their particular implementation; there may be valid reasons to ignore an item, but the full implications must be understood and carefully weighed before choosing a different course
4. MAY: This is truly optional language for an implementation; can be included or omitted as the implementer decides with no implications
Advertising server support for this profile
As described in the Conformance section, a server advertises its support for SMART Confidential Clients with Asymmetric Keys by including the client-confidential-asymmetric capability at is .well-known/smart-configuration endpoint; configuration properties include token_endpoint, scopes_supported, token_endpoint_auth_methods_supported (with values that include private_key_jwt), and token_endpoint_auth_signing_alg_values_supported (with values that include at least one of RS384, ES384).
Example .well-known/smart-configuration Response
HTTP/1.1 200 OK
Content-Type: application/json

{
 "token_endpoint": "https://ehr.example.com/auth/token",
 "token_endpoint_auth_methods_supported": ["private_key_jwt"],
 "token_endpoint_auth_signing_alg_values_supported": ["RS384", "ES384"],
 "scopes_supported": ["system/*.rs"]
}
Registering a client (communicting public keys)
Before a SMART client can run against a FHIR server, the client SHALL generate or obtain an asymmetric key pair and SHALL register its public key set with that FHIR server’s authorization service (referred to below as the “FHIR authorization server”). SMART does not require a standards-based registration process, but we encourage FHIR service implementers to consider using the OAuth 2.0 Dynamic Client Registration Protocol.
No matter how a client registers with a FHIR authorization server, the client SHALL register the public key the client will use to authenticate itself to the FHIR authorization server. The public key SHALL be conveyed to the FHIR authorization server in a JSON Web Key (JWK) structure presented within a JWK Set, as defined in JSON Web Key Set (JWKS). The client SHALL protect the associated private key from unauthorized disclosure and corruption.
For consistency in implementation, FHIR authorization servers SHALL support registration of client JWKs using both of the following techniques (clients SHALL choose a server-supported method at registration time):
1. URL to JWK Set (strongly preferred). This URL communicates the TLS-protected endpoint where the client’s public JWK Set can be found. This endpoint SHALL be accessible via TLS without authentication or authorization. Advantages of this approach are that it allows a client to rotate its own keys by updating the hosted content at the JWK Set URL, assures that the public key used by the FHIR authorization server is current, and avoids the need for the FHIR authorization server to maintain and protect the JWK Set. The client SHOULD return a “Cache-Control” header in its JWKS response	Comment by Heuvel, Bas van den: If the endpoint is not authorized what prevents a hacker from spoofing the keys?
2. JWK Set directly (strongly discouraged). If a client cannot host the JWK Set at a TLS-protected URL, it MAY supply the JWK Set directly to the FHIR authorization server at registration time. In this case, the FHIR authorization server SHALL protect the JWK Set from corruption, and SHOULD remind the client to send an update whenever the key set changes. Conveying the JWK Set directly carries the limitation that it does not enable the client to rotate its keys in-band. Including both the current and successor keys within the JWK Set helps counter this limitation. However, this approach places increased responsibility on the FHIR authorization server for protecting the integrity of the key(s) over time, and denies the FHIR authorization server the opportunity to validate the currency and integrity of the key at the time it is used.
The client SHALL be capable of generating a JSON Web Signature in accordance with RFC7515. The client SHALL support both RS384 and ES384 for the JSON Web Algorithm (JWA) header parameter as defined in RFC7518. The FHIR authorization server SHALL be capable of validating signatures with at least one of RS384 or ES384. Over time, best practices for asymmetric signatures are likely to evolve. While this specification mandates a baseline of support clients and servers MAY support and use additional algorithms for signature validation. As a reference, the signature algorithm discovery protocol token_endpoint_auth_signing_alg_values_supported property is defined in OpenID Connect as part of the OAuth2 server metadata.
No matter how a JWK Set is communicated to the FHIR authorization server, each JWK SHALL represent an asymmetric key by including kty and kid properties, with content conveyed using “bare key” properties (i.e., direct base64 encoding of key material as integer values). This means that:
· For RSA public keys, each JWK SHALL include n and e values (modulus and exponent)
· For ECDSA public keys, each JWK SHALL include crv, x, and y values (curve, x-coordinate, and y-coordinate, for EC keys)
Upon registration, the client SHALL be assigned a client_id, which the client SHALL use when requesting an access token.
Authenticating to the Token endpoint
This specification describes how a client authenticates using an asymmetric key, e.g. when requesting an access token during SMART App Launch or SMART Backend Services, a
Authentication is based on the OAuth 2.0 client credentials flow, with a JWT assertion as the client’s authentication mechanism.
To begin the exchange, the client SHALL use the Transport Layer Security (TLS) Protocol Version 1.2 (RFC5246) or a more recent version of TLS to authenticate the identity of the FHIR authorization server and to establish an encrypted, integrity-protected link for securing all exchanges between the client and the FHIR authorization server’s token endpoint. All exchanges described herein between the client and the FHIR server SHALL be secured using TLS V1.2 or a more recent version of TLS .
Request
Before a client can request an access token, it SHALL generate a one-time-use JSON Web Token (JWT) that will be used to authenticate the client to the FHIR authorization server. The authentication JWT SHALL include the following claims, and SHALL be signed with the client’s private key (which SHOULD be an RS384 or ES384 signature). For a practical reference on JWT, as well as debugging tools and client libraries, see https://jwt.io.
	Authentication JWT Header Values

	alg
	required
	The JWA algorithm (e.g., RS384, ES384) used for signing the authentication JWT.

	kid
	required
	The identifier of the key-pair used to sign this JWT. This identifier SHALL be unique within the client's JWK Set.

	typ
	required
	Fixed value: JWT.

	jku
	optional
	The TLS-protected URL to the JWK Set containing the public key(s) accessible without authentication or authorization. When present, this SHALL match the JWKS URL value that the client supplied to the FHIR authorization server at client registration time. When absent, the FHIR authorization server SHOULD fall back on the JWK Set URL or the JWK Set supplied at registration time. See Signature Verification for details.

	Authentication JWT Claims

	iss
	required
	Issuer of the JWT -- the client's client_id, as determined during registration with the FHIR authorization server (note that this is the same as the value for the sub claim)

	sub
	required
	The client's client_id, as determined during registration with the FHIR authorization server (note that this is the same as the value for the iss claim)

	aud
	required
	The FHIR authorization server's "token URL" (the same URL to which this authentication JWT will be posted -- see below)

	exp
	required
	Expiration time integer for this authentication JWT, expressed in seconds since the "Epoch" (1970-01-01T00:00:00Z UTC). This time SHALL be no more than five minutes in the future.

	jti
	required
	A nonce string value that uniquely identifies this authentication JWT.

After generating an authentication JWT, the client requests an access token following either the SMART App Launch or the SMART Backend Services specification. Authentication details are conveyed using the following additional properties on the token request:
	Parameters

	client_assertion_type
	required
	Fixed value: urn:ietf:params:oauth:client-assertion-type:jwt-bearer

	client_assertion
	required
	Signed authentication JWT value (see above)

Response
Signature Verification
The FHIR authorization server SHALL validate the JWT according to the processing requirements defined in Section 3 of RFC7523 including validation of the signature on the JWT.
In addition, the authentication server SHALL:
· check that the jti value has not been previously encountered for the given iss within the maximum allowed authentication JWT lifetime (e.g., 5 minutes). This check prevents replay attacks.
· ensure that the client_id provided is known and matches the JWT’s iss claim
To resolve a key to verify signatures, a FHIR authorization server SHALL follow this algorithm:
1. If the jku header is present, verify that the jku is whitelisted (i.e., that it matches the JWKS URL value supplied at registration time for the specified client_id).
a. If the jku header is not whitelisted, the signature verification fails.
b. If the jku header is whitelisted, create a set of potential keys by dereferencing the jku URL. Proceed to step 3.
2. If the jku header is absent, create a set of potential key sources consisting of all keys found in the registration-time JWKS or found by dereferencing the registration-time JWK Set URL. Proceed to step 3.
3. Identify a set of candidate keys by filtering the potential keys to identify the single key where the kid matches the value supplied in the client's JWT header, and the kty is consistent with the signature algorithm supplied in the client's JWT header (e.g., RSA for a JWT using an RSA-based signature, or EC for a JWT using an EC-based signature). If no keys match, or more than one key matches, the verification fails.
4. Attempt to verify the JWK using the key identified in step 3.
To retrieve the keys from a JWKS URL in step 1 or step 2, a FHIR authorization server issues a HTTP GET request that URL to obtain a JWKS response. For example, if a client has registered a JWKS URL of https://client.example.com/path/to/jwks.json, the server retrieves the client’s JWKS with a GET request for that URL, including a header of Accept: application/json.
If an error is encountered during the authentication process, the server SHALL respond with an invalid_client error as defined by the OAuth 2.0 specification.
· The FHIR authorization server SHALL NOT cache a JWKS for longer than the client’s cache-control header indicates.
· The FHIR authorization server SHOULD cache a client’s JWK Set according to the client’s cache-control header; it doesn’t need to retrieve it anew every time.
Processing of the access token request proceeds according to either the SMART App Launch or the SMART Backend Services specification.
Worked example
Assume that a “bilirubin result monitoring service” client has registered with a FHIR authorization server whose token endpoint is at “https://authorize.smarthealthit.org/token”, establishing the following
· JWT “issuer” URL: https://bili-monitor.example.com
· OAuth2 client_id: bili_monitor
· JWK identfier: kid value (see example JWK)
The client protects its private key from unauthorized access, use, and modification.
At runtime, when the bilirubin monitoring service needs to authenticate to the token endpoint, it generates a one-time-use authentication JWT.
JWT Headers:
{
 "typ": "JWT",
 "alg": "RS384",
 "kid": "eee9f17a3b598fd86417a980b591fbe6"
}
JWT Payload:
{
 "iss": "https://bili-monitor.example.com",
 "sub": "bili_monitor",
 "aud": "https://authorize.smarthealthit.org/token",
 "exp": 1422568860,
 "jti": "random-non-reusable-jwt-id-123"
}
Using the client’s RSA private key, with SHA-384 hashing (as specified for an RS384 algorithm (alg) parameter value in RFC7518), the signed token value is:
eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzM4NCIsImtpZCI6ImVlZTlmMTdhM2I1OThmZDg2NDE3YTk4MGI1OTFmYmU2In0.eyJpc3MiOiJiaWxpX21vbml0b3IiLCJzdWIiOiJiaWxpX21vbml0b3IiLCJhdWQiOiJodHRwczovL2F1dGhvcml6ZS5zbWFydGhlYWx0aGl0Lm9yZy90b2tlbiIsImV4cCI6MTQyMjU2ODg2MCwianRpIjoicmFuZG9tLW5vbi1yZXVzYWJsZS1qd3QtaWQtMTIzIn0.l2E3-ThahEzJ_gaAK8sosc9uk1uhsISmJfwQOtooEcgUiqkdMFdAUE7sr8uJN0fTmTP9TUxssFEAQnCOF8QjkMXngEruIL190YVlwukGgv1wazsi_ptI9euWAf2AjOXaPFm6t629vzdznzVu08EWglG70l41697AXnFK8GUWSBf_8WHrcmFwLD_EpO_BWMoEIGDOOLGjYzOB_eN6abpUo4GCB9gX2-U8IGXAU8UG-axLb35qY7Mczwq9oxM9Z0_IcC8R8TJJQFQXzazo9YZmqts6qQ4pRlsfKpy9IzyLzyR9KZyKLZalBytwkr2lW7QU3tC-xPrf43jQFVKr07f9dA

Note: to inspect this example JWT, you can visit https://jwt.io. Paste the signed JWT value above into the “Encoded” field, and paste the sample public signing key (starting with the {"kty": "RSA" JSON object, and excluding the { "keys": [JWK Set wrapping array) into the “Public Key” box. The plaintext JWT will be displayed in the “Decoded:Payload” field, and a “Signature Verified” message will appear.
For a complete code example demonstrating how to generate this assertion, see: rendered Jupyter Notebook, source .ipynb file.
Requesting an Access Token
A client_assertion generated in this fashion can be used to request an access token as part of a SMART App Launch authorization flow, or as part of a SMART Backend Services authorization flow. See complete example:
· SMART App Launch: specification; full example
· SMART Backend Services: specification; full example

6 Symmetric Authentication
· Profile Audience and Scope
· Authentication using a client_secret
Profile Audience and Scope
This profile desribesdescribes SMART’s client-confidential-symmetric authentication mechanism. It is intended for for SMART App Launch clients that can maintain a secret but cannot manage asymmetric keypairs. For client that can manage asymmetric keypairs, Asymmetric Authentication is preferred. This profile is not intended for SMART Backend Services clients.
Authentication using a client_secret
If a client has registered for Client Password authentication (i.e., it possesses a client_secret that is also known to the EHR), the client authenticates by supplying an Authorization header with HTTP Basic authentication, where the username is the app’s client_id and the password is the app’s client_secret.
Example
If the client_id is “my-app” and the client_secret is “my-app-secret-123”, then the header uses the value B64Encode(“my-app:my-app-secret-123”), which converts to bXktYXBwOm15LWFwcC1zZWNyZXQtMTIz. This gives the app the Authorization token for “Basic Auth”.
GET header:
Authorization: Basic bXktYXBwOm15LWFwcC1zZWNyZXQtMTIz
7 Token Introspection	Comment by Heuvel, Bas van den: This section is very minimal, for the other protocols, the base protocol is included, this one just provides the delta. This makes it harder to read.
· Required fields in the introspection response
· Conditional fields in the introspection response
· Authorization to perform Token Introspection
· Example Request and Response
SMART on FHIR EHRs SHOULD support Token Introspection, which allows a broader ecosystem of resource servers to leverage authorization decisions managed by a single authorization server. Token Introspection is conducted according to RFC 7662: OAuth 2.0 Token Introspection, with the following additional considerations presented in the sections below.	Comment by Heuvel, Bas van den: Add that the URL is present in conformance.
Required fields in the introspection response
In addition to the active field required by RFC7662 (a boolean indicating whether the access token is active), the following fields SHALL be included in the introspection response:
· scope. As included in the original access token response. The list of scopes granted by the authorization server as a space-separated JSON string.
· client_id. As included in the original access token response. The client identifier of the client to which the token was issued.
· exp. As included in the original access token response. The integer timestamp indicating when the access token expires.
Conditional fields in the introspection response
In addition to the required fields, the following fields SHALL be included in the introspection response when the specified conditions are met:
· SMART Launch Context. If a launch context parameter defined in Scopes and Launch Context (e.g., patient or intent) was included in the original access token response, the parameter SHALL be included in the token introspection response.	Comment by Heuvel, Bas van den: For this is unclear. This this relate to any of the fields that are present in the table in section 4.0.3.1? If not, to what context parameter this rules apply?
· ID Token Claims. If an id_token was included in the original access token response, the following claims from the ID Token SHALL be included in the Token Introspection response:
· iss
· sub
· ID Token Claims. If an id_token was included in the original access token response, the following claims from the ID Token SHOULD be included in the Token Introspection response:
· fhirUser
Authorization to perform Token Introspection
SMART on FHIR EHRs MAY implement access control protecting the Token Introspection endpoint. If access control is implemented, any client authorized to issue Token Introspection API calls SHOULD be able to authenticate to the Token Introspection endpoint using its client credentials. Further considerations for access control are out of scope for the SMART App Launch IG.
Example Request and Response
Example Token Introspection request:
 POST /introspect HTTP/1.1
 Host: server.example.com
 Accept: application/json
 Content-Type: application/x-www-form-urlencoded
 Authorization: Bearer 23410913-abewfq.123483

 token=2YotnFZFEjr1zCsicMWpAA
Example Token Introspection response:
 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "active": true,
 "client_id": "07a89bd2-52ce-4576-8b85-71698efa8328",
 "scope": "patient/*.read openid fhirUser",
 "sub": "c91dfe96-731d-4e66-b4f9-01f8f8a4b7b2",
 "patient": "Patient/456",
 "fhirUser": "https://ehr.example.org/fhir/Patient/123",
 "exp": 1597678964,
 }
8 Conformance	Comment by Heuvel, Bas van den: Shouldn’t this be section 4?
· SMART on FHIR OAuth authorization Endpoints and Capabilities
· FHIR Authorization Endpoint and Capabilities Discovery using a Well-Known Uniform Resource Identifiers (URIs)
The SMART’s App Launch specification enables apps to launch and securely interact with EHRs. The specification can be described as a set of capabilities and a given SMART on FHIR server implementation may implement a subset of these. The methods of declaring a server’s SMART authorization endpoints and launch capabilities are described in the sections below.
SMART on FHIR OAuth authorization Endpoints and Capabilities
The server SHALL convey the FHIR OAuth authorization endpoints and any optional SMART Capabilities it supports using a Well-Known Uniform Resource Identifiers (URIs) JSON file. (In previous versions of SMART, some of these details were also conveyed in a server’s CapabilityStatement; this mechanism is now deprecated.)
Capability Sets
A Capability Set combines individual capabilities to enable a specific use-case. A SMART on FHIR server SHOULD support one or more Capability Sets. Unless otherwise noted, each capability listed is required to satisfy a Capability Set. Any individual SMART server will publish a granular list of its capabilities; from this list a client can determine which of these Capability Sets are supported:
External implementation guides MAY define additional capabilities to be discovered through this same mechanism. IGs published by HL7 MAY use simple strings to represent additional capabilities (e.g., example-new-capability); IGs published by other organizations SHALL use full URIs to represent additional capabilities (e.g., http://sdo.example.org/example-new-capability).
Patient Access for Standalone Apps
1. launch-standalone
2. At least one of client-public or client-confidential-symmetric; and MAY support client-confidential-asymmetric
3. context-standalone-patient
4. permission-patient
Patient Access for EHR Launch (i.e. from Portal)
1. launch-ehr
2. At least one of client-public or client-confidential-symmetric; and MAY support client-confidential-asymmetric
3. context-ehr-patient
4. permission-patient
Clinician Access for Standalone
1. launch-standalone
2. At least one of client-public or client-confidential-symmetric; and MAY support client-confidential-asymmetric
3. permission-user
4. permission-patient
Clinician Access for EHR Launch
1. launch-ehr
2. At least one of client-public or client-confidential-symmetric; and MAY support client-confidential-asymmetric
3. context-ehr-patient support
4. context-ehr-encounter support
5. permission-user
6. permission-patient
Capabilities
To promote interoperability, the following SMART on FHIR Capabilities have been defined. A given set of these capabilities is combined to support a specific use, a Capability Set.
Launch Modes
· launch-ehr: support for SMART’s EHR Launch mode
· launch-standalone: support for SMART’s Standalone Launch mode
Authorization Methods
· authorize-post: support for POST-based authorization
Client Types
· client-public: support for SMART’s public client profile (no client authentication)
· client-confidential-symmetric: support for SMART’s symmetric confidential client profile (“client secret” authentication). See Client Authentication: Symmetric.
· client-confidential-asymmetric: support for SMART’s asymmetric confidential client profile (“JWT authentication”). See Client Authentication: Asymmetric.
Single Sign-on
· sso-openid-connect: support for SMART’s OpenID Connect profile
Launch Context
The following capabilities convey that a SMART on FHIR server is capable of providing context to an app at launch time.
Lauch Context for UI Integration
These capabilities only apply during an EHR Launch, and context-style only for an embedded EHR Launch.
· context-banner: support for “need patient banner” launch context (conveyed via need_patient_banner token parameter)
· context-style: support for “SMART style URL” launch context (conveyed via smart_style_url token parameter). This capability is deemed experimental.
Launch Context for EHR Launch
When a SMART on FHIR server supports the launch of an app from within an existing user session (“EHR Launch”), the server has an opportunity to pass existing, already-established context (such as the current patient ID) through to the launching app. Using the following capabilities, a server declares its ability to pass context through to an app at launch time:
· context-ehr-patient: support for patient-level launch context (requested by launch/patient scope, conveyed via patient token parameter)
· context-ehr-encounter: support for encounter-level launch context (requested by launch/encounter scope, conveyed via encounter token parameter)
Launch Context for Standalone Launch
When a SMART on FHIR server supports the launch of an app from outside an existing user session (“Standalone Launch”), the server may be able to proactively resolve new context to help establish the details required for an app launch. For example, an external app may request that the SMART on FHIR server should work with the end-user to establish a patient context before completing the launch.
· context-standalone-patient: support for patient-level launch context (requested by launch/patient scope, conveyed via patient token parameter)
· context-standalone-encounter: support for encounter-level launch context (requested by launch/encounter scope, conveyed via encounter token parameter)
Permissions
· permission-offline: support for refresh tokens (requested by offline_access scope)
· permission-online: support for refresh tokens (requested by online_access scope)
· permission-patient: support for patient-level scopes (e.g. patient/Observation.rs)
· permission-user: support for user-level scopes (e.g. user/Appointment.rs)
· permission-v1: support for SMARTv1 scope syntax (e.g., patient/Observation.read)
· permission-v2: support for SMARTv2 granular scope syntax (e.g., patient/Observation.rs?category=http://terminology.hl7.org/CodeSystem/observation-category|vital-signs)

FHIR Authorization Endpoint and Capabilities Discovery using a Well-Known Uniform Resource Identifiers (URIs)
The authorization endpoints accepted by a FHIR resource server are exposed as a Well-Known Uniform Resource Identifiers (URIs) (RFC5785) JSON document.
FHIR endpoints requiring authorization SHALL serve a JSON document at the location formed by appending /.well-known/smart-configuration to their base URL. Contrary to RFC5785 Appendix B.4, the .well-known path component may be appended even if the FHIR endpoint already contains a path component.
Responses for /.well-known/smart-configuration requests SHALL be JSON, regardless of Accept headers provided in the request.
· clients MAY omit an Accept header
· servers MAY ignore any client-supplied Accept headers
· servers SHALL respond with application/json
Sample Request
Sample requests:
Base URL “fhir.ehr.example.com”
GET /.well-known/smart-configuration HTTP/1.1
Host: fhir.ehr.example.com
Base URL “www.ehr.example.com/apis/fhir”
GET /apis/fhir/.well-known/smart-configuration HTTP/1.1
Host: www.ehr.example.com
Response
A JSON document must be returned using the application/json mime type.
Metadata
· issuer: CONDITIONAL, String conveying this system’s OpenID Connect Issuer URL. Required if the server’s capabilities include sso-openid-connect; otherwise, omitted.
· jwks_uri: CONDITIONAL, String conveying this system’s JSON Web Key Set URL. Required if the server’s capabilities include sso-openid-connect; otherwise, optional.
· authorization_endpoint: REQUIRED, URL to the OAuth2 authorization endpoint.
· grant_types_supported: REQUIRED, Array of grant types supported at the token endpoint. The options are “authorization_code” (when SMART App Launch is supported) and “client_credentials” (when SMART Backend Services is supported).
· token_endpoint: REQUIRED, URL to the OAuth2 token endpoint.
· token_endpoint_auth_methods_supported: OPTIONAL, array of client authentication methods supported by the token endpoint. The options are “client_secret_post”, “client_secret_basic”, and “private_key_jwt”.
· registration_endpoint: OPTIONAL, If available, URL to the OAuth2 dynamic registration endpoint for this FHIR server.
· scopes_supported: RECOMMENDED, Array of scopes a client may request. See scopes and launch context. The server SHALL support all scopes listed here; additional scopes MAY be supported (so clients should not consider this an exhaustive list).
· response_types_supported: RECOMMENDED, Array of OAuth2 response_type values that are supported. Implementers can refer to response_types defined in OAuth 2.0 (RFC 6749) and in OIDC Core.
· management_endpoint: RECOMMENDED, URL where an end-user can view which applications currently have access to data and can make adjustments to these access rights.
· introspection_endpoint : RECOMMENDED, URL to a server’s introspection endpoint that can be used to validate a token.
· revocation_endpoint : RECOMMENDED, URL to a server’s revoke endpoint that can be used to revoke a token.
· capabilities: REQUIRED, Array of strings representing SMART capabilities (e.g., sso-openid-connect or launch-standalone) that the server supports.
· code_challenge_methods_supported: REQUIRED, Array of PKCE code challenge methods supported. The S256 method SHALL be included in this list, and the plain method SHALL NOT be included in this list.
Sample Response
HTTP/1.1 200 OK
Content-Type: application/json

{
 "issuer": "https://ehr.example.com",
 "jwks_uri": "https://ehr.example.com/.well-known/jwks.json",
 "authorization_endpoint": "https://ehr.example.com/auth/authorize",
 "token_endpoint": "https://ehr.example.com/auth/token",
 "token_endpoint_auth_methods_supported": [
 "client_secret_basic",
 "private_key_jwt"
],
 "grant_types_supported": [
 "authorization_code",
 "client_credentials"
],
 "registration_endpoint": "https://ehr.example.com/auth/register",
 "scopes_supported": ["openid", "profile", "launch", "launch/patient", "patient/*.rs", "user/*.rs", "offline_access"],
 "response_types_supported": ["code"],
 "management_endpoint": "https://ehr.example.com/user/manage",
 "introspection_endpoint": "https://ehr.example.com/user/introspect",
 "revocation_endpoint": "https://ehr.example.com/user/revoke",
 "code_challenge_methods_supported": ["S256"],
 "capabilities": [
 "launch-ehr",
 "permission-patient",
 "permission-v2",
 "client-public",
 "client-confidential-symmetric",
 "context-ehr-patient",
 "sso-openid-connect"
]
}
9 Best Practices
· Considerations for Scope Consent (Non-Normative)
· App and Server developers should consider trade-offs associated with confidential vs public app architectures
· Best Practices
· Best practices for server developers include
· Best practices for app developers include
Considerations for Scope Consent (Non-Normative)
In 3rd-party authorization scenarios (where the client and the resource server are not from the same organization), it is a common requirement for authorization servers to obtain the user’s consent prior to granting the scopes requested by the client. In order to collect the required consent in a transparent manner, it is important that the authorization server presents a summary of the requested scopes in concise, plain language that the user understands.	Comment by Heuvel, Bas van den: Not for clinical apps running in the hospital is it? This would introduce an additional step to an already click-overburdened staff. What applications are considered here? We should be more clear on those.
The responsibility of supporting transparent consent falls on both the authorization server implementer as well as the client application developer.	Comment by Heuvel, Bas van den: The word consent is not clear in this sentence. Is it about transparent communication on the scopes the user consents on?
Client Application Considerations
· In a complex authorization scenario involving user consent, the complexity of the authorization request presented to the user should be considered and balanced against the concept of least privilege. Make effective use of both wildcard and SMART 2.0 fine grained resource scopes to reduce the number and complexity of scopes requested. The goal is to request an appropriate level of access in a transparent manner that the user fully understands and agrees with.
Authorization Server Considerations
· For each requested scope- present the user with both a short and long description of the access requested. The long description may be available in a pop-up window or some similar display method. These descriptions should be in plain language, localized to the language set in the user’s browser.
· Consider publishing consent design documentation for client developers- including user interface screenshots and full scope description metadata. This will provide valuable transparency to client developers as they make decisions on what access to request at authorization time.
· Avoid industry jargon when describing a given scope to the user. For example, an average patient may not know what is meant if a client application is requesting for access to their “Encounters”.
· If using the experimental query-based scopes, consider how the query will be represented in plain language. If the query cannot easily be explained in a single sentence, adjustment of the requested scope should be considered or proper documentation provided to educate the intended user population.
App and Server developers should consider trade-offs associated with confidential vs public app architectures	Comment by Heuvel, Bas van den: Web page? If this relates only to apps, a section should be added for webpages.
1. Persistent access is important for providing a seamless consumer experience, and Refresh Tokens are the mechanism SMART App Launch defines for enabling persistent access. If an app is ineligible for refresh tokens, the developer is likely to seek other means of achieving this (e.g., saving a user’s password and simulating login; or moving to a cloud-based architecture even though there’s no use case for managing data off-device).	Comment by Heuvel, Bas van den: Which device? Is this assuming apps again?
2. Client architectures where data pass through or are stored in a secure backend server (e.g., many confidential clients) can offer more secure {refresh token :: client} binding, but are open to certain attacks that purely-on-device apps are not subject to (e.g., cloud server becomes compromised and tokens/secrets leak). A breach in this context can be widespread, across many users.	Comment by Heuvel, Bas van den: ????
3. Client architectures where data are managed exclusively on end-user devices (e.g., many public clients including most native apps today, where an app is only registered once with a given EHR) are open to certain attacks that confidential clients can avoid (e.g., a malicious app on your device might steal tokens from a valid app, or might impersonate a valid app). A breach in this context is more likely to be isolated to a given user or device.
The choice of app architecture should be based based on context. Apps that already need to manage data in the cloud should consider a confidential client architecture; apps that don’t should consider a purely-on-device architecture. But this decision only works if refresh tokens are available in either case; otherwise, app developers will switch architectures just to be able to maintain persistent access, even if the overall security posture is diminished.
Best Practices	Comment by Heuvel, Bas van den: Heading 4
This page reflects best practices established at the time of publication. For up-to-date community discussion, see SMART on FHIR Best Practices on the HL7 Confluence Site
Best practices for server developers include	Comment by Heuvel, Bas van den: Heading 5
· Remind users which apps have offline access (keeping in mind that too many reminders lead to alert fatigue)
· Mitigate threats of compromised refreshed tokens
· Expire an app’s authorization if a refresh token is used more than once (see OAuth 2.1 section 6.1)
· Consider offering clients a way to bind refresh tokens to asymmetric secrets managed in hardware
· E.g., per-device dynamic client registration (see ongoing work on UDAP specifications)
· E.g., techniques like the draft DPOP specification
Best practices for app developers include	Comment by Heuvel, Bas van den: Heading 5
· Ensure that refresh tokens are never used more than once
· Take advantage of techniques to bind refresh tokens to asymmetric secrets managed in hardware, when available (see above)
· If an app only needs to connect to EHR when the user is present, maintain secrets with best-available protection (e.g., biometric unlock)
· Publicly document any code of conduct that an app adheres to (e.g., CARIN Alliance code of conduct)
10 Examples
· SMART App Launch Examples
· SMART Backend Services Examples
SMART App Launch Examples
These examples demonstrate all steps involved in the SMART App Launch authorization process.
· Public client
· Confidential client, asymmetric authentication
· Confidential client, symmetric authentication
SMART Backend Services Examples
This example demonstrates all steps involved in the SMART Backend Services authorization process.
· Backend Services

11 Artifacts Summary
Contents:
This page provides a list of the FHIR artifacts defined as part of this implementation guide.

image1.png
App EHR with Authorization Server FHIR Server
Opt__J [Precondition: Client Registration]

_(may be out of band) !
TRty e

) (EAR Launcnl |
| EHR user
! launches app

{_ Launch request
s rounchrequest |

stifdsions Caanehi "

App user
connects to EHR

[

covery request I

|_ Discovery response |

Authorization request _|
R TR

H ot ; n
| EHR incorporates user inpu
| into authorization decision
Toranted] I

T Authorization granted |
1 Authorization granted

| Access token request |

|_ Access token response |
[oCoess e responee

Request Resources

Authorization error

App EHR with Authorization Server

FHIR Server

