Draft - STU2

[image:]
FHIRcast
Overview
The FHIRcast specification describes the APIs used to synchronize disparate healthcare applications' user interfaces in real time, allowing them to show the same clinical content to a user (or group of users).
In order to connect to a session, tOnce the subscribing app needs information on the session. Once that knows about thinformation is retrievede session, the app may subscribese to specific workflow-related events for the given session. The app is then notified when those workflow-related events occur; for example, by when the clinician is opening a patient's chart. The subscribing app can alsomay initiate context changes, e.g. closing the patient's chart, by accessing the APIs specified in this specification; for example, closing the patient's chart. When the application no longer needs to receive these events, itThe app deletes its subscription to no longer receive notifications. The notification messages describing the workflow event are defined as is a simple json wrapper around one or more FHIR resources.	Comment by Isaac Vetter: Bas, I don’t think there’s a functional difference between your suggested text and the meaning of the existing text. I also think that the existing text is more accessible to the reader. Especially considering that this is the second paragraph in the entire spec, I’d like to keep it as accessible as possible. 	Comment by Isaac Vetter: Same thing here. I don’t think there’s a functional difference and the existing text is more readable.
FHIRcast recommends the HL7 SMART on FHIR launch protocol for both session discovery and API authentication. FHIRcast enables a subscriber to receive notifications either through a webhook WebHook or over a WebSocket connection. This protocol, and is modeled on the W3C WebSub RFC, and uses such as its use of GET vs POST interactions to and a Hub for managing subscriptions. A The Hub exposes APIs for subscribing and unsubscribing, requesting context changes and also distribute event notifications. The below flow diagram presented below illustrates the series of interactions specified by FHIRcast, their origination and their outcome.	Comment by Isaac Vetter: Disagree with this capitalization, see rationale, here: https://jira.hl7.org/browse/FHIR-25886
[image: FHIRcast flow diagram overview]
All data exchanged through the HTTP APIs SHALL be formatted, sent and received as JSON structures, and SHALL be transmitted over channels secured using the Hypertext Transfer Protocol (HTTP) over Transport Layer Security (TLS), also known as HTTPS and which is defined in RFC2818. For WebSockets, data SHALL be transmitted over Secure Web Sockets (WSS) as defined in RFC6455.
Events
FHIRcast describes an workflow event subscription and notification scheme towards with the goal of improving a clinician's workflow across multiple disparate applications. The set of events defined in this specification is here are not a closed set; companies can define their own anyone is able to define new events to to fit specific their use cases and are encouraged and to propose those events to the community for standardization.	Comment by Isaac Vetter: Disagree with the implication that only business entities can do this.
New events are proposed in a prescribed format using the documentation template by submitting a pull request. FHIRcast events are versioned, and mature according to the Event Maturity Model.
FHIRcast events are stateless. For a given event, opens and closes are a complete replacement of any previously communicated contextevents, not "deltas". Understanding an event SHALL not require receiving a previous or future event.	Comment by Heuvel, Bas van den: This is not true. A close of a patient that is not open is not enough to understand the current context.	Comment by Isaac Vetter: How about this change?
Event Definition Format
Each event definition, specifies a single event name, a description of the workflow in which the event occurs, and the contextual information associated with the event. FHIR is the interoperable data model used by FHIRcast. The context information associated with an event is communicated as subsets of FHIR resources. Event notifications SHALL include the elements of the FHIR resources defined in the context from the event definition. Event notifications MAY include other elements of these resources. The source of these resources is the application's context or the FHIR server. The Hub SHALL return FHIR resources from the application's context. If the resource is not part of the application's context, it SHALL read them from the FHIR server.	Comment by Heuvel, Bas van den: I do not understand this sentence. Is this needed? Can we not just remove this sentence. 	Comment by Isaac Vetter: Yes, done. Thank you!
For example, when the ImagingStudy-open event occurs, the notification sent to a subscriber SHALL include the an ImagingStudy FHIR resource, which includes at least the . Hubs should send the results of an ImagingStudy FHIR read using elements defined in the _elements query parameter, like indicated in the event definition. For ImagingStudy this is defined as so: ImagingStudy/{id}?_elements=identifier,accession. The element based query is defined in the FHIR specificationand in accordance with the FHIR specification.
A Hub SHALL at least send the required elementsmay not support the _elements query parameter; a subscriber SHALL gracefully handle receiving a full FHIR resource in the context of a notification.
Each defined event in the standard event catalog SHALL be defined in the following format.
Event Definition Format: hook-name
Most FHIRcast events conform to an extensible syntax based upon FHIR resources. In the rare case where the FHIR data model doesn't describe content in the session, FHIRcast events MAY be statically named differently. For example, FHIR doesn't cleanly contain the concept of a user or user's session.
Patterned after the SMART on FHIR scope syntax and FHIRcast events SHOULD conform to this extensible syntax, patterned after the SMART on FHIR scope syntax. Eexpressed in EBNF notation, the FHIRcast syntax for workflow related events is:
hub.events ::= (fhir-resource | '*') '-' ('open' | 'close' | '*')
[image: syntax for new events]
FHIRcast events SHOULD conform to this extensible syntax.
Event names are unique and case-insensitive. Implementers may define their own events. Such proprietary Statically named events, specific to an organizationevents, SHALL be named with reverse domain notation (e.g. org.example.patient_transmogrify). Reverse domain notation SHALL not be used by a standard event catalog. Statically named eEvent namess SHALL not contain a dash ("-").	Comment by Heuvel, Bas van den: Why not if they are proprietary?	Comment by Isaac Vetter: The idea was to minimize potential naming collisions (which isn’t a risk if using domain notation), but maybe also to simplify event name parsing?
Event Definition Format: Workflow
Describe the workflow in which the event occurs. Event creators SHOULD include as much detail and clarity as possible to minimize any ambiguity or confusion amongst implementers.
Event Definition Format: Context
Describe the set of contextual data associated with this event. Only data logically and necessarily associated with the purpose of this workflow related event should be represented in context. An event SHALL contain all required data fields, MAY contain optional data fields and SHALL not contain any additional fields.
All fields available within an event's context SHALL be defined in a table where each field is described by the following attributes:
· Key: The name of the field in the context JSON object. Event authors SHOULD name their context fields to be consistent with other existing events when referring to the same context field.
· Optionality: A string value of either REQUIRED, OPTIONAL or Required, if exists	Comment by Heuvel, Bas van den: CONDITIONAL?
· FHIR operation to generate context: A FHIR read or search string illustrating the intended content of the event.
· Description: A functional description of the context value. If this value can change according to the FHIR version in use, the description SHOULD describe the value for each supported FHIR version.
Session Discovery
A session is an abstract concept representing a shared workspace, such as user's login session over multiple applications or a shared view of one application distributed to multiple users. FHIRcast requires a session to have a unique, unguessable and opaque identifier. This identifier is exchanged as the value of the hub.topic parameter. Before establishing a subscription, an app must not only know the hub.topic, but also the hub.url which contains the base url of the Hub.
Systems SHOULD use SMART on FHIR to authorize, authenticate and exchange initial shared context. If using SMART, following a SMART on FHIR EHR launch or SMART on FHIR standalone launch, the app SHALL request and, if authorized, SHALL be granted one or more fhircast OAuth 2.0 scopes. Accompanying this scope grant, the authorization server SHALL supply the hub.url and hub.topic SMART launch parameters alongside the access token and other parameters appropriate to establish initial shared context. Per SMART, when the openid scope is granted, the authorization server additionally sends the current user's identity in an id_token.
Although FHIRcast works best with the SMART on FHIR launch and authorization process, implementation-specific launch, authentication, and authorization protocols may be possible. If not using SMART on FHIR, the mechanism enabling the app to discover the hub.url and hub.topic is not defined in FHIRcast. See other launch scenarios for guidance.
FHIRcast Authorization & SMART scopes
FHIRcast defines OAuth 2.0 access scopes that correspond directly to FHIRcast events. Our scopes associate read or write permissions to an event. Apps that need to receive workflow related events should ask for read scopes. Apps that request context changes should ask for write scopes. Hubs may decide what specific interactions and operations will be enabled by these scopes.
Expressed in Extended Backus-Naur Form (EBNF) notation, the FHIRcast syntax for workflow related events is:
scope ::= ('fhircast') '/' (FHIRcast-event | '*') '.' ('read' | 'write' | '*')
[image: FHIRcast SMART scopes]
The FHIRcast event name is also a computable syntax, the complete syntax for FHIRcast scopes is:	Comment by Heuvel, Bas van den: How does this work with proprietary and other events?
Isn’t it better to make the definition:
Fhircast/<event-name>.read/write/*
This will work for all events.
scope ::= 'fhircast' '/' fhir-resource '-' ('open' | 'close' | '*') '.' ('read' | 'write' | '*')
[image: FHIRcast SMART scopes and event syntax]
For example, a requested scope of fhircast/patient-open.read would authorize the subscribing application to receive a notification when the patient in context changed. Similarly, a scope of fhircast/patient-open.write authorizes the subscribed app to request a context change.
SMART Launch Example
An example of the SmartOnFhir message is presented below.
{
 "access_token": "i8hweunweunweofiwweoijewiwe",
 "token_type": "bearer",
 "patient": "123",
 "expires_in": 3600,
 "encounter": "456",
 "imagingstudy": "789",
 "hub.url" : "https://hub.example.com",
 "hub.topic": "fdb2f928-5546-4f52-87a0-0648e9ded065",
}
Note that the SMART launch parameters include the Hub's base url and the session identifier in the hub.url and hub.topic fields.
Subscribing and Unsubscribing
Subscribing and unsubscribing is how applications establish their connection and determine to which events they will be notified. Hubs SHALL support WebSockets and MAY support webhooks. If the Hub does not support webhooks then they should deny any subscription requests with webhook as the channel type.
Subscribing consists of two exchanges:
· Subscriber requests a subscription at the hub.url url.
· The hub confirms the subscription that was actually requested by the subscriber. This exchange can be implemented in two ways depending on the channel type.
· For webhook subscriptions, the Hub confirms the subscription was actually requested by the subscriber by contacting the hub.callback url.
· For websocket subscriptions, the Hub returns a wss url and subscriber establishes WebSocket connection.
Unsubscribing works in the same way, using the same message format. The hub.mode field is set to unsubscribe instead of subscribe. , except with a single parameter changed to indicate the desire to unsubscribe. Also, tThe Hub will not validate unsubscription requests with the subscriber.
Subscription Request
To create a subscription, the subscribing app SHALL perform an HTTP POST to the Hub's base url (as specified in hub.url) with the parameters in the table below.
This request SHALL have a Content-Type header of application/x-www-form-urlencoded and SHALL use the following parameters in its body, formatted accordingly:
	Field
	Optionality
	Channel
	Type
	Description

	hub.channel.type
	REQUIRED
	All
	string
	The subscriber SHALL specify a channel type of websocket or webhook. Subscription requests without this field SHOULD be rejected by the Hub.

	hub.mode
	REQUIRED
	All
	string
	The literal string "subscribe" or "unsubscribe", depending on the goal of the request.

	hub.topic
	REQUIRED
	All
	string
	The identifier of the session that the subscriber wishes to subscribe to or unsubscribe from. MAY be a Universally Unique Identifier (UUID).

	hub.events
	CONDITIONAL
	All
	string
	Required for subscriptions, SHALL not be present during unsubscriptions. Comma-separated list of event types from the Event Catalog for which the Subscriber wants to subscribe. Partial unsubscriptions are not supported.	Comment by Heuvel, Bas van den: If this is the case, the hub.events list does not matter. What to do if the list differs? Ignore or unsubscribe?	Comment by Isaac Vetter: Added: “and SHALL result in a full unsubscribe.”

	hub.lease_seconds
	OPTIONAL
	All
	number
	Number of seconds for which the subscriber would like to have the subscription active, given as a positive decimal integer. Hubs MAY choose to respect this value or not, depending on their own policies, and MAY set a default value if the subscriber omits the parameter. If using OAuth 2.0, the Hub SHALL limit the subscription lease seconds to be less than or equal to the access token's expiration.

	hub.callback
	REQUIRED
	webhook
	string
	The Subscriber's callback URL where notifications should be delivered. The callback URL SHOULD be an unguessable URL that is unique per subscription.

	hub.secret
	OPTIONAL
	webhook
	string
	A subscriber-provided cryptographically random unique secret string that SHALL be used to compute an HMAC digest delivered in each notification. This parameter SHALL be less than 200 bytes in length.

	hub.channel.endpoint
	REQUIREDConditional
	websocket
	string
	Required when hub.channel.type=websocket for re-subscribes and unsubscribes. The wss url identifying an existing WebSocket subscription.	Comment by Isaac Vetter: Bas, I don’t understand the justification for this change. Yes, we’re requiring Hubs to support websockets, but apps aren’t stopped from using webhooks.

If OAuth 2.0 authentication is used, this POST request SHALL contain the Bearer access token in the HTTP Authorization header.
Hubs SHALL allow subscribers to re-request subscriptions that are already activated. Each subsequent and verified request to a Hub to subscribe or unsubscribe SHALL override the previous subscription state for a specific hub.topic, hub.callback / hub.channel.endpoint url, and hub.events combination. For example, a subscriber MAY modify its subscription by sending a subscription request (`hub.mode=subscribe`) with a different `hub.events` value with the same topic and callback/endpoint url. The Hub SHALL replace the subscription’s previous `hub.events` with the newly provided list of events. For example, a subscriber MAY modify its subscription by subscribing to or unsubscribing from additional events by sending subscription requests for additional events with the same topic and callback/endpoint url.
For webhook subscriptions, the callback URL MAY contain arbitrary query string parameters (e.g., ?foo=bar&red=fish). Hubs SHALL preserve the query string during subscription verification by appending new, Hub-defined, parameters to the end of the list using the & (ampersand) character to join. When sending the event notifications, the Hub SHALL make a POST request to the callback URL including any query string parameters in the URL portion of the request, not as POST body parameters.
The client that creates the subscription may not be the same system as the server hosting the callback url or connecting to the wss url. (For example, some type of federated authorization model could possibly exist between these two systems.) However, in FHIRcast, the Hub assumes that the same authorization and access rights apply to both the subscribing client and the system receiving notifications.
Subscription Response
If the Hub URL successfully received supports FHIRcast and is able to handle the subscription or unsubscription requests, the Hub SHALL respond to a subscription request with an HTTP 202 "Accepted" response. This ind to indicates that the request was received and will now be verified by the Hub. If When using WebSockets and supported by the Hub, the HTTP body of the response SHALL contain an element named "hub.channel.endpoint" that contains the a wss url as json. The WebSocket wss url SHALL be cryptographically random, unique and unguessable. , with an element name of "hub.channel.endpoint". If using webhooksWebHook, the Hub SHOULD perform the verification of intent as soon as possible. The WebSocket wss url SHALL be cryptographically random, unique and unguessable.	Comment by Heuvel, Bas van den: WebSockets are required.	Comment by Heuvel, Bas van den:
If a Hub refuses the request or finds any errors in the subscription request, an appropriate HTTP error response code (4xx or 5xx) SHALL be returned. In the event of an error, the Hub SHOULD return a description of the error in the response body as plain text, used to assist the client developer in understanding the error. This is not meant to be shown to the end user. Hubs MAY decide to reject some subscription requests based on their own policies.
webhook vs websocket
A hub is REQUIRED to support WebSockets and MAY support WebHook based subscriptions. A subscriber specifies the preferred hub.channel.type of either webhook or websocket during creation of its subscription. Subscribers SHOULD use websockets when they are unable to host an accessible callback url.
Implementer feedback is solicited around the preference and desired optionality of webhooks and websockets.	Comment by Isaac Vetter: Is it okay to leave it implementer solicitation comments like this in a publication? I definitely agree with your intent.
webhook Subscription Request Example
In this example, the app asks to be notified of the patient-open and patient-close events.
POST https://hub.example.com
Host: hub.example.com
Authorization: Bearer i8hweunweunweofiwweoijewiwe
Content-Type: application/x-www-form-urlencoded

hub.channel.type=webhook&hub.callback=https%3A%2F%2Fapp.example.com%2Fsession%2Fcallback%2Fv7tfwuk17a&hub.mode=subscribe&hub.topic=fdb2f928-5546-4f52-87a0-0648e9ded065&hub.secret=shhh-this-is-a-secret&hub.events=patient-open,patient-close
webhook Subscription Response Example
HTTP/1.1 202 Accepted
websocket Initial Subscription Request Example
In this example, the app creates an initial subscription and asks to be notified of the patient-open and patient-close events.
POST https://hub.example.com
Host: hub.example.com
Authorization: Bearer i8hweunweunweofiwweoijewiwe
Content-Type: application/x-www-form-urlencoded

hub.channel.type=websocket&hub.mode=subscribe&hub.topic=fdb2f928-5546-4f52-87a0-0648e9ded065&hub.events=patient-open,patient-close
websocket Subscription Response Example
HTTP/1.1 202 Accepted

{
 "hub.channel.endpoint": wss://hub.example.com/ee30d3b9-1558-464f-a299-cbad6f8135de
}
Subscription Denial
If (and when) the subscription is denied, the Hub SHALL inform the subscriber. This can occur when the subscription is requested for a variety of reasons, or it can occur after the subscription had already been accepted because the Hub no longer supports that subscription (e.g. it has expired). The communication mechanism for a subscription denial varies per hub.channel.type, but the information communicated from the Hub to the subscriber does not.
	Field
	Optionality
	Type
	Description

	hub.mode
	REQUIRED
	string
	The literal string "denied".

	hub.topic
	REQUIRED
	string
	The topic given in the corresponding subscription request. MAY be a UUID.

	hub.events
	REQUIRED
	string
	A comma-separated list of events from the Event Catalog corresponding to the events string given in the corresponding subscription request, which are being denied.

	hub.reason
	OPTIONAL
	string
	The Hub may include a reason. The subscription MAY be denied by the Hub at any point (even if it was previously accepted). The Subscriber SHOULD then consider that the subscription is not possible anymore.

The below webhook flow diagram and WebSocket flow diagram and examples illustrate the subscription denial sequence and message details.
webhook Subscription Denial
To deny a webhook subscription, the Hub sends an HTTP GET request to the subscriber's callback URL as given in the subscription request. This request appends the fields as query string arguments. The subscriber SHALL respond with an HTTP success (2xx) code.
webhook Subscription Denial Sequence
[image: Subscription denial flow diagram]
webhook Subscription Denial Example
GET https://app.example.com/session/callback/v7tfwuk17a?hub.mode=denied&hub.topic=fdb2f928-5546-4f52-87a0-0648e9ded065hub.events=patient-open,patient-close&hub.reason=session+unexpectedly+stopped HTTP 1.1
Host: subscriber
websocket Subscription Denial
To deny a websocket subscription, the Hub sends a json object to the subscriber through the established WebSocket connection.
websocketSubscription Denial Sequence
[image: Subscription denial flow diagram]
websocket Subscription Denial Example
{
 "hub.mode": "denied",
 "hub.topic":" "fba7b1e2-53e9-40aa-883a-2af57ab4e2c",
 "hub.events": "patient-open,patient-close",
 "hub.reason": "session unexpectedly stopped"
}
Subscription Confirmation
If a subscription or unsubscription is not denied, the Hub SHALL confirm the subscription. The subscription confirmation step informs the subscriber of the details of Hub's recently created subscription. For webhook subscriptions, the confirmation also verifies the intent of the subscriber and ensures that the subscriber actually controls the callback url.
webhook Intent Verification Request
In order to prevent an attacker from creating unwanted subscriptions on behalf of a subscriber, a Hub must ensure that a webhook subscriber did indeed send the subscription request. The Hub SHALL verify a subscription request by sending an HTTPS GET request to the subscriber's callback URL as given in the subscription request. This request SHALL have the following query string arguments appended.
	Field
	Optionality
	Type
	Description

	hub.mode
	REQUIRED
	string
	The literal string "subscribe" or "unsubscribe", which matches the original request to the Hub from the subscriber.

	hub.topic
	REQUIRED
	string
	The session topic given in the corresponding subscription request. MAY be a UUID.

	hub.events
	REQUIRED
	string
	A comma-separated list of events from the Event Catalog corresponding to the events string given in the corresponding subscription request.

	hub.challenge
	REQUIRED
	string
	A Hub-generated, random string that SHALL be echoed by the subscriber to verify the subscription.

	hub.lease_seconds
	REQUIRED
	number
	The Hub-determined number of seconds that the subscription will stay active before expiring, measured from the time the verification request was made from the Hub to the subscriber. If provided to the client, the Hub SHALL unsubscribe the client once lease_seconds has expired, close the websocket connection if used, and MAY send a subscription denial. If the subscriber wishes to continue the subscription it MAY resubscribe.

webhook Intent Verification Request Example
GET https://app.example.com/session/callback/v7tfwuk17a?hub.mode=subscribe&hub.topic=fdb2f928-5546-4f52-87a0-0648e9ded065&hub.events=patient-open,patient-close&hub.challenge=meu3we944ix80ox&hub.lease_seconds=7200 HTTP 1.1
Host: subscriber
webhook Intent Verification Response
If the hub.topic of the Intent Verification Request corresponds to a pending subscription or unsubscription that the subscriber wishes to carry out it SHALL respond with an HTTP success (2xx) code, a header of Content-Type: text/html, and a response body equal to the hub.challenge parameter. If the subscriber does not agree with the action, the subscriber SHALL respond with a 404 "Not Found" response.
The Hub SHALL consider other server response codes (3xx, 4xx, 5xx) to mean that the verification request has failed. If the subscriber returns an HTTP success (2xx) but the content body does not match the hub.challenge parameter, the Hub SHALL also consider verification to have failed.
The below flow diagram and example illustrate the successful subscription sequence and message details.
webhook Successful Subscription Sequence
[image: Successful subscription flow diagram]
webhook Intent Verification Response Example
HTTP/1.1 200 OK
Content-Type: text/html

meu3we944ix80ox
NOTE The spec uses GET vs POST to differentiate between the confirmation/denial of the subscription request and delivering the content. While this is not considered "best practice" from a web architecture perspective, it does make implementation of the callback URL simpler. Since the POST body of the content distribution request may be any arbitrary content type and only includes the actual content of the document, using the GET vs POST distinction to switch between handling these two modes makes implementations simpler.
websocket Subscription Confirmation
To confirm a subscription request, upon the subscriber establishing a WebSocket connection to the hub.channel.endpoint wss url, the Hub SHALL send a confirmation. This confirmation includes the following elements:
	Field
	Optionality
	Type
	Description

	hub.mode
	Required
	string
	The literal string "subscribe".

	hub.topic
	Required
	string
	The session topic given in the corresponding subscription request.

	hub.events
	Required
	string
	A comma-separated list of events from the Event Catalog corresponding to the events string given in the corresponding subscription request.

	hub.lease_seconds
	Required
	number
	The Hub-determined number of seconds that the subscription will stay active before expiring, measured from the time the verification request was made from the Hub to the subscriber. If provided to the client, the Hub SHALL unsubscribe the client once lease_seconds has expired, close the websocket connection if used, and MAY send a subscription denial. If the subscriber wishes to continue the subscription it MAY resubscribe.

websocket Subscription Confirmation Example
{
 "hub.mode": "subscribe",
 "hub.topic": "fdb2f928-5546-4f52-87a0-0648e9ded065",
 "hub.events": "patient-open,patient-close",
 "hub.lease_seconds": 7200
}
websocket Successful Subscription Sequence
[image: Successful web socket subscription flow diagram]
Unsubscribe
Once a subscribing app no longer wants to receive event notifications, it SHALL unsubscribe from the session. An unsubscribe cannot alter an existing subscription, only cancel it. Note that the unsubscribe request is performed over HTTP(s), even for subscriptions using WebSockets. websocket unsubscribes will destroy the websocket which cannot be reused. A subsequent subscription SHALL be done over a newly created and communicated WebSocket endpoint.
	Field
	Optionality
	Channel
	Type
	Description

	hub.channel.type
	Required
	All
	string
	The subscriber SHALL specify a channel type of websocket or webhook. Subscription requests without this field SHOULD be rejected by the Hub.

	hub.mode
	Required
	All
	string
	The literal string "unsubscribe".

	hub.topic
	Required
	All
	string
	The identifier of the session that the subscriber wishes to subscribe to or unsubscribe from. MAY be a UUID.

	hub.lease_seconds
	Optional
	All
	number
	This parameter MAY be present for unsubscription requests and MUST be ignored by the hub in that case.

	hub.callback
	Required
	webhook
	string
	The Subscriber's callback URL.

	hub.secret
	Optional
	webhook
	string
	A subscriber-provided cryptographically random unique secret string that SHALL be used to compute an HMAC digest delivered in each notification. This parameter SHALL be less than 200 bytes in length.

	hub.channel.endpoint
	Conditional
	websocket
	string
	Required for websocket re-subscribes and unsubscribes. The wss url identifying an existing WebSocket subscription.

webhook Unsubscribe Request Example
POST https://hub.example.com
Host: hub
Authorization: Bearer i8hweunweunweofiwweoijewiwe
Content-Type: application/x-www-form-urlencoded

hub.channel.type=webhook&hub.callback=https%3A%2F%2Fapp.example.com%2Fsession%2Fcallback%2Fv7tfwuk17a&hub.mode=unsubscribe&hub.topic=fdb2f928-5546-4f52-87a0-0648e9ded065&hub.secret=shhh-this-is-a-secret&hub.challenge=meu3we944ix80ox

websocket Unsubscribe Request Example
POST https://hub.example.com
Host: hub
Authorization: Bearer i8hweunweunweofiwweoijewiwe
Content-Type: application/x-www-form-urlencoded

hub.channel.type=websocket&hub.channel.endpoint=wss%3A%2F%2Fhub.example.com%2Fee30d3b9-1558-464f-a299-cbad6f8135de%0A&hub.mode=unsubscribe&hub.topic=fdb2f928-5546-4f52-87a0-0648e9ded065

webhook and websocket Unsubscription Sequence
[image: Unsubscription flow diagram]
Event Notification
The Hub SHALL notify subscribed apps of workflow-related events to which the app is subscribed. The notification is a JSON object communicated over the webhook or websocket channel.
webhook vs websocket
A subscriber specifies the preferred hub.channel.type of either webhook or websocket during creation of its subscription. Subscribers SHOULD use WebSockets when they are unable to host an accessible callback url.
Event Notification Request
The HTTP request notification interaction to the subscriber SHALL include a description of the subscribed event that just occurred, an ISO 8601-2 formatted timestamp in UTC and an event identifier that is universally unique for the Hub. The timestamp SHOULD be used by subscribers to establish message affinity (message ordering) through the use of a message queue. The event identifier MAY be used to differentiate retried messages from user actions.
Event Notification Request Details
The notification's hub.event and context fields inform the subscriber of the current state of the user's session. The hub.event is a user workflow event, from the Event Catalog (or an organization-specific event in reverse-domain name notation). The context is an array of named FHIR resources (similar to CDS Hooks's context field) that describe the current content of the user's session. Each event in the Event Catalog defines what context is included in the notification. The context contains zero, one, or more FHIR resources. Hubs MAY SHOULD use the FHIR _elements parameter to limit the size of the data being passed while also including additional, local identifiers that are likely already in use in production implementations. Subscribers SHALL accept a full FHIR resource or the _elements-limited resource as defined in the Event Catalog.	Comment by Heuvel, Bas van den: Twice – remove mandatory text above?	Comment by Isaac Vetter: It’s not exactly the same requirement. Above, we’re saying that Hubs SHALL sent at least the defined elements and client SHALL gracefully handle more than the minimum elements. This statement recommends that Hubs support ?_elements to limit what’s sent.
	Field
	Optionality
	Type
	Description

	timestamp
	REQUIRED
	string
	ISO 8601-2 timestamp in UTC describing the time at which the event occurred.

	id
	REQUIRED
	string
	Event identifier used to recognize retried notifications. This id SHALL be unique for the Hub, for example a UUID.

	event
	REQUIRED
	object
	A json object describing the event. See below.

	Field
	Optionality
	Type
	Description

	hub.topic
	REQUIRED
	string
	The session topic given in the subscription request. MAY be a UUID.

	hub.event
	REQUIRED
	string
	The event that triggered this notification, taken from the list of events from the subscription request.

	context
	REQUIRED
	array
	An array of named FHIR objects corresponding to the user's context after the given event has occurred. Common FHIR resources are: Patient, Encounter, and ImagingStudy. The Hub SHALL only return FHIR resources that the subscriber is authorized to receive with the existing OAuth 2.0 access_token's granted fhircast/ scopes.

Extensions
The specification is not prescriptive about support for extensions. However, to support extensions, the specification reserves the name extension and will never define an element with that name, allowing implementations to use it to provide custom behavior and information. The value of an extension element MUST be a pre-coordinated JSON object. For example, an extension on a notification could look like this:
{
 "context": [{
 "key": "patient",
 "resource": {
 "resourceType": "Patient",
 "id": "ewUbXT9RWEbSj5wPEdgRaBw3"
 }
 },
 {
 "key": "extension",
 "data": {
 "user-timezone": "+1:00"
 }
 }
]
}
webhook Event Notification Request Details
For webhook subscriptions, using the hub.secret from the subscription request, the Hub SHALL generate an HMAC signature of the payload and include that signature in the request headers of the notification. The X-Hub-Signature header's value SHALL be in the form method=signature where method is one of the recognized algorithm names and signature is the hexadecimal representation of the signature. The signature SHALL be computed using the HMAC algorithm (RFC6151) with the request body as the data and the hub.secret as the key.
POST https://app.example.com/session/callback/v7tfwuk17a HTTP/1.1
Host: subscriber
X-Hub-Signature: sha256=dce85dc8dfde2426079063ad413268ac72dcf845f9f923193285e693be6ff3ae

<json object>
Event Notification Request Example
For both webhook and websocket subscriptions, the event notification content is the same.
{
 "timestamp": "2018-01-08T01:37:05.14",
 "id": "q9v3jubddqt63n1",
 "event": {
 "hub.topic": "fdb2f928-5546-4f52-87a0-0648e9ded065",
 "hub.event": "patient-open",
 "context": [
 {
 "key": "patient",
 "resource": {
 "resourceType": "Patient",
 "id": "ewUbXT9RWEbSj5wPEdgRaBw3",
 "identifier": [
 {
 "type": {
 "coding": [
 {
 "system": "http://terminology.hl7.org/CodeSystem/v2-0203",
 "value": "MR",
 "display": "Medication Record Number"
 }
 "text": "MRN"
]
 }
 }
]
 }
 }
]
 }
}
Event Notification Response
The subscriber SHALL respond to the event notification with an appropriate HTTP status code. In the case of a successful notification, the subscriber SHALL respond with an HTTP 200 (OK) or 202 (Accepted) response code to indicate a success; otherwise, the subscriber SHALL respond with an HTTP error status code. The Hub MAY use these statuses to track synchronization state.
In the case of a successful notification, if the subscriber is able to implement the context change, an HTTP 200 (OK) is the appropriate code; if the subscriber has successfully received the event notification, but has not yet taken action: an HTTP 202 (Accepted).
webhook Event Notification Response Example
For webhook subscriptions, the HTTP status code is communicated in the HTTP response, as expected.
HTTP/1.1 200 OK
websocket Event Notification Response Example
For websocket subscriptions, the id of the event notification and the HTTP status code is communicated from the client to Hub through the existing WebSocket channel, wrapped in a json object. Since the WebSocket channel does not have a synchronous request/response, this id is necessary for the Hub to correlate the response to the correct notification.
	Field
	Optionality
	Type
	Description

	id
	Required
	string
	Event identifier from the event notification to which this response corresponds.

	status
	Required
	numeric HTTP status code
	Numeric HTTP response code to indicate success or failure of the event notification within the subscribing app. Any 2xx code indicates success, any other code indicates failure.

{
 "id": "q9v3jubddqt63n1",
 "status": "200"
}
webhook and websocket Event Notification Sequence
[image: Event Notification flow diagram]
Event Notification Errors
All standard events are defined outside of the base FHIRcast specification in the Event Catalog with the single exception of the infrastructural syncerror event.
If the subscriber cannot follow the context of the event, for instance due to an error or a deliberate choice to not follow a context, the subscriber SHOULD communicate the error to the Hub in one of two ways.
· Responding to the event notification with an HTTP error status code as described in Event Notification Response.
· Responding to the event notification with an HTTP 202 (Accepted) as described above, then, once experiencing the error, send a syncerror event to the Hub.
If the Hub receives an error notification from a subscriber, it SHOULD generate a syncerror event to the other subscribers of that topic. syncerror events are like other events in that they need to be subscribed to in order for an app to receive the notifications and they have the same structure as other events, the context being a single FHIR OperationOutcome resource.
Event Notification Error Request
Request Context Change Parameters
	Field
	Optionality
	Type
	Description

	timestamp
	REQUIRED
	string
	ISO 8601-2 timestamp in UTC describing the time at which the syncerror event occurred.

	id
	REQUIRED
	string
	Event identifier, which MAY be used to recognize retried notifications. This id SHALL be unique and could be a UUID.

	event
	REQUIRED
	object
	A json object describing the event. See below.

Event Notification Error Event Object Parameters
	Field
	Optionality
	Type
	Description

	hub.topic
	REQUIRED
	string
	The session topic given in the subscription request.

	hub.event
	REQUIRED
	string
	Shall be the string syncerror.

	context
	REQUIRED
	array
	An array containing a single FHIR OperationOutcome. The OperationOutcome SHALL use a code of processing. The OperationOutcome's details SHALL contain the id of the event that this error is related to as a code with the system value of "https://fhircast.hl7.org/events/syncerror/eventid" and the name of the relevant event with a system value of "https://fhircast.hl7.org/events/syncerror/eventname". Other coding values can be included with different system values so as to include extra information about the syncerror.	Comment by Heuvel, Bas van den: SHOULD hold diagnostics field with information to be show to the user on what went wrong?

Event Notification Error Example
POST https://hub.example.com/7jaa86kgdudewiaq0wtu HTTP/1.1
Host: hub
Authorization: Bearer i8hweunweunweofiwweoijewiwe
Content-Type: application/json

{
 "timestamp": "2018-01-08T01:37:05.14",
 "id": "q9v3jubddqt63n1",
 "event": {
 "hub.topic": "7544fe65-ea26-44b5-835d-14287e46390b",
 "hub.event": "syncerror",
 "context": [
 {
 "key": "operationoutcome",
 "resource": {
 "resourceType": "OperationOutcome",
 "issue": [
 {
 "severity": "warning",
 "code": "processing",
 "diagnostics": "AppId3456 failed to follow context",
 "details": {
 "coding": [
 {
 "system": "https://fhircast.hl7.org/events/syncerror/eventid",
 "code": "fdb2f928-5546-4f52-87a0-0648e9ded065"
 },
 {
 "system": "https://fhircast.hl7.org/events/syncerror/eventname",
 "code": "patient-open"
 }
]
 }
 }
]
 }
 }
]
 }
}
webhook and websocket Event Notification Error Sequence
[image: Event Notification Error flow diagram]
Request Context Change
Similar to the Hub's notifications to the subscriber, the subscriber MAY request context changes with an HTTP POST to the hub.url. The Hub SHALL either accept this context change by responding with any successful HTTP status or reject it by responding with any 4xx or 5xx HTTP status. Similarly to event notifications, described above, the Hub could also respond with a 202 (Accepted) status, process the request, then later respond with a syncerror event in order to reject the request. In this case the syncerror would only be sent to the requestor. The subscriber SHALL be capable of gracefully handling a rejected context request.
Once a requested context change is accepted, the Hub SHALL broadcast the context notification to all subscribers, including the original requestor. The requestor can use the broadcasted notification as confirmation of their request. The Hub reusing the request's id is further confirmation that the event is a result of their request.
[image: Request context change flow diagram]
Request Context Change Request
Request Context Change Parameters
	Field
	Optionality
	Type
	Description

	timestamp
	REQUIRED
	string
	ISO 8601-2 timestamp in UTC describing the time at which the event occurred.

	id
	REQUIRED
	string
	Event identifier, which MAY be used to recognize retried notifications. This id SHALL be uniquely generated by the subscriber and could be a UUID. Following an accepted context change request, the Hub MAY re-use this value in the broadcasted event notifications.

	event
	REQUIRED
	object
	A json object describing the event. See below.

Request Context Change Event Object Parameters
	Field
	Optionality
	Type
	Description

	hub.topic
	REQUIRED
	string
	The session topic given in the subscription request.

	hub.event
	REQUIRED
	string
	The event that triggered this request for the subscriber, taken from the list of events from the subscription request.

	context
	REQUIRED
	array
	An array of named FHIR objects corresponding to the user's context after the given event has occurred. Common FHIR resources are: Patient, Encounter, ImagingStudy and List.

POST https://hub.example.com/7jaa86kgdudewiaq0wtu HTTP/1.1
Host: hub
Authorization: Bearer i8hweunweunweofiwweoijewiwe
Content-Type: application/json

{
 "timestamp": "2018-01-08T01:40:05.14",
 "id": "wYXStHqxFQyHFELh",
 "event": {
 "hub.topic": "fdb2f928-5546-4f52-87a0-0648e9ded065",
 "hub.event": "close-patient-chart",
 "context": [
 {
 "key": "patient",
 "resource": {
 "resourceType": "Patient",
 "id": "798E4MyMcpCWHab9",
 "identifier": [
 {
 "type": {
 "coding": [
 {
 "system": "http://terminology.hl7.org/CodeSystem/v2-0203",
 "value": "MR",
 "display": "Medication Record Number"
 }
 "text": "MRN"
]
 }
 }
]
 }
 }
]
 }
}
Conformance
The FHIRcast specification can be described as a set of capabilities and any specific FHIRcast Hub may implement a subset of these capabilities. A FHIRcast Hub declares support for FHIRcast and specific capabilities by exposing an extension on its FHIR server's CapabilityStatement as described below.
Declaring support for FHIRcast	Comment by Isaac Vetter: Bas, I’d refactored this section after you downloaded the spec, but before the wg voted. Also, since we really only created this discovery/conformance feature during ballot resolution, it feels premature to make it a SHALL.
A FHIRserver SHALL server declares support for FHIRcast using the one ore more FHIRcast extensions on its FHIR CapabilityStatement's rest element. The FHIRcast extension has the following internal components:
	Component
	Cardinality
	Type
	Description

	eventsSupported
	1..*
	string
	Space-delimited list of FHIRcast events supported by the Hub.

	hub.url
	0..1
	url
	The url at which an app subscribes. May not be supported by client-side Hubs.

	websocketSupport
	1..1
	boolean
	The static value: true, indicating support for websockets.

	webhookSupport
	0..1
	boolean
	true or false indicating support for webhooks.

	fhircastVersion
	0..1
	string
	STU1 or STU2 indicating support for a specific version of FHIRcast.

CapabilityStatement Extension Example
{
 "resourceType": "CapabilityStatement",
...
 "rest": [{
 ...
 "extension": [
 {
 "url": "http://fhircast.hl7.org/StructureDefinition/fhircast-configuration",
 "extension": [
 {
 "url": "eventsSupported",
 "valueUri": "patient-open patient-close com.example.researchstudy-transmogrify"
 },
 {
 "url": "hub.url",
 "valueUri": "https://hub.example.com/fhircast/hub.v2"
 },
 {
 "url": "websocketSupport",
 "valueBoolean": true
 },
 {
 "url": "webhookSupport",
 "valueBoolean": false
 },
 {
 "url": "fhircastVersion",
 "valueString": "STU2"
 }
]
] ...
Change Management and Versioning
Event Maturity Model
The intent of the FHIRcast Event Maturity Model is to attain broad community engagement and consensus, before an event is labeled as mature, and to ensure that the event is necessary, implementable, and worthwhile to the systems that would reasonably be expected to use it. Implementer feedback should drive the maturity of new events. Diverse participation in open developer forums and events, such as HL7 FHIR Connectathons, is necessary to achieve significant implementer feedback. The below criteria will be evaluated with these goals in mind.
	Maturity Level
	Maturity title
	Requirements

	0
	Draft
	Event is correctly named and defined per the FHIRcast event template.

	1
	Submitted
	The above, and … Event definition is written up as a pull request using the Event template and community feedback is solicited from the community (e.g. the zulip FHIRcast stream](https://chat.fhir.org/#narrow/stream/179271-FHIRcast)).

	2
	Tested
	The above, and … The event has been tested and successfully supports interoperability among at least one Hub and two independent subscribing apps using semi-realistic data and scenarios (e.g. at a FHIR Connectathon). The github pull request defining the event is approved and published.

	3
	Considered
	The above, and … At least 3 distinct organizations recorded ten distinct implementer comments (including a github issue, tracker item, or comment on the event definition page), including at least two Hubs and three subscribing apps. The event has been tested at two connectathons.

	4
	Documented
	The above, and … The author agrees that the artifact is sufficiently stable to require implementer consultation for subsequent non-backward compatible changes. The event is implemented in the standard FHIRcast reference implementation and multiple prototype projects. The Event specification SHALL:
Identify a broad set of example contexts in which the event may be used with a minimum of three, but as many as 10.
Clearly differentiate the event from similar events or other standards to help an implementer determine if the event is correct for their scenario.
Explicitly document example scenarios when the event should not be used.

	5
	Mature
	The above, and ... The event has been implemented in production in at least two Hubs and three independent subscribing apps. An HL7 working group ballots the event and the event has passed HL7 STU ballot.

	6
	Normative
	The above, and ... the responsible HL7 working group and the sponsoring working group agree the material is ready to lock down and the event has passed HL7 normative ballot

Event Maturity
As each event progresses through a process of being defined, tested, implemented, used in production environments, and balloted, the event's formal maturity level increases. Each event has its own maturity level, which SHALL be defined in the event's definition and correspond to the Event Maturity Model.
Change Log
Changes made to an event's definition SHALL be documented in a change log to ensure event consumers can track what has been changed over the life of an event. The change log SHALL contain the following elements:
· Version: The version of the change
· Description: A description of the change and its impact
For example:
	Version
	Description

	1.1
	Added new context FHIR object

	1.0.1
	Clarified workflow description

	1.0
	Initial Release

Glossary
· session: an abstract concept representing a shared workspace, such as a user's login session across multiple applications or a shared view of one application distributed to multiple users. A session results from a user logging into an application and can encompass one or more workflows.
· topic: an identifier of a session
· client: subscribes to and requests or receives session events
· current context: data associated with a session at a given time and communicated between clients that share a session
· session event: a user initiated workflow event, communicated to clients, containing the current context
Revision History
All changes to the FHIRcast specification are tracked in the specification's HL7 github repository. Further, issues may be submitted and are tracked in jira or (historically as) github issues. For the reader's convenience, the below table additionally lists significant changes to the specification.
20200715 Significant changes as part of the STU2 publication included:
· Introduction of WebSockets as the preferred communication mechanism over webhooks.
· Creation of a FHIR CapabilityStatement extension to support Hub capability discovery.
· Additional, required information on syncerror OperationOutcome (namely communication of the error'd event's id and event name).
· Websocket wss url communicated in HTTP body, instead of Content-Location HTTP header.
· Subscribers should differentiate between immediately applied context changes and mere successfully received notifications with HTTP code responses of 200 and 202, respectively.

image2.png
Driving App b Driving
- appiication (subscriber) application

[fep subscrives

i Applaunch/

Session Discovery lto hub. Hub verifies

lcalloack url with
jsubscriber.

[Subscribe]

Intent verification

[user changes

finternal
workflow event]

lcontext, hub notiies
jsubscribers

Event notfication

Request context change fntemat [ro requestea

lchange of context
[epplied

change context]

Unsubscribe

image3.png

image4.png

image5.png
fhir-resource

image6.png
POST: subscribe]

GET: denial to callback url]

2xx success response]

App subscribes
to hub. Hub denies
subscription.This
denial may occur at
any time, even
after a successful
intent verification
or event
notifications.

image7.png
[POST: subscribe]

202 Accepted
Body: wss url]

‘Subscriber connects to
wss url]

[Hub informs subscriber
of denial over websocket]

App subscribes
to hub. Hub denies
subscription. This
denial may occur at
any time once the
client has
established a wss

connection.

image8.png
Hub

POST: subscribe]

202 Accepted]

App subscribes
to hub. Hub verifies
callback url with
subscriber.

GET: verify callback url

200 OK confirm subscription]

image9.png
[POST Subscive]

[app subscrives
lto hub. Hub creates
lweb socket and
lconfirms subscription
Jonce app connects

1202 Accepted]

Establish WebSocket connection

Subscription confimation

image10.png
[POST Unsubscrive]

1202 Accepted]

[App unsubscrives [,
lto hub. Hub removes.
/app from subscribed
lapps and closes the
[web socket (i any)

image11.png
§

Hubis notfied of a context
change in one of the.
subscribed appiications

b ‘Webhook App Websocket App
(subscriber) (subscriber)
H H H [FUB noties
Event Nofffcation lsubscribing
lapplications, either
Event Nofifiation |va ebhooks or
lwebsockets
202 accepts
et pted]
€
id:"qevajubddats3n
status: "200"
ntemal
context
ahange

ntemal
context
ahange

image12.png
§

Hub

‘Webhook App
(subscriber)

‘Websocket App
(subscriber)

Hubis notfied of 2 context
change i one of the.
subscrbed appications

“id: “a@3jubddats3n

)

status: 200

1409 contict] I

Isynceor]

el
anange

[Hub notfies
Event Nolifcation lsubscribing
l2pplications
Event Nolifcation
[One of the

lapplications is unate:
lo follow context and
responds vith 2 409
conflct

[Subscribing

lapplication is mage
laware that one
lapplication is out of
jsync_Ciient can
lehoose to rollback,
Inotfy user or with an
implementation

lspecific response.

image13.png
Request context change

Hub

¥

2

ccepted)

Event nofficaion (o al subscribers)

‘Successiul request
context change

Request context change

Syncerror (only to requestor)

Denied request
context change

image1.png
International

